Back to index

tor  0.2.3.19-rc
Classes | Defines | Typedefs | Functions
sha256.c File Reference

SHA256 by Tom St Denis. More...

This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Classes

struct  sha256_state

Defines

#define CRYPT_OK   0
#define CRYPT_NOP   -1
#define CRYPT_INVALID_ARG   -2
#define LOAD32H(x, y)   STMT_BEGIN x = ntohl(get_uint32((const char*)y)); STMT_END
#define STORE32H(x, y)   STMT_BEGIN set_uint32((char*)y, htonl(x)); STMT_END
#define STORE64H(x, y)
#define RORc(x, y)   ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
#define MIN(x, y)   ( ((x)<(y))?(x):(y) )
#define Ch(x, y, z)   (z ^ (x & (y ^ z)))
#define Maj(x, y, z)   (((x | y) & z) | (x & y))
#define S(x, n)   RORc((x),(n))
#define R(x, n)   (((x)&0xFFFFFFFFUL)>>(n))
#define Sigma0(x)   (S(x, 2) ^ S(x, 13) ^ S(x, 22))
#define Sigma1(x)   (S(x, 6) ^ S(x, 11) ^ S(x, 25))
#define Gamma0(x)   (S(x, 7) ^ S(x, 18) ^ R(x, 3))
#define Gamma1(x)   (S(x, 17) ^ S(x, 19) ^ R(x, 10))
#define RND(a, b, c, d, e, f, g, h, i, ki)

Typedefs

typedef struct sha256_state sha256_state

Functions

static int sha256_compress (sha256_state *md, unsigned char *buf)
static int sha256_init (sha256_state *md)
 Initialize the hash state.
static int sha256_process (sha256_state *md, const unsigned char *in, unsigned long inlen)
 Process a block of memory though the hash.
static int sha256_done (sha256_state *md, unsigned char *out)
 Terminate the hash to get the digest.

Detailed Description

SHA256 by Tom St Denis.

Definition in file sha256.c.


Class Documentation

struct sha256_state

Definition at line 8 of file sha256.c.

Class Members
unsigned char buf
uint32_t curlen
uint64_t length
uint32_t state

Define Documentation

#define Ch (   x,
  y,
 
)    (z ^ (x & (y ^ z)))

Definition at line 67 of file sha256.c.

#define CRYPT_INVALID_ARG   -2

Definition at line 16 of file sha256.c.

#define CRYPT_NOP   -1

Definition at line 15 of file sha256.c.

#define CRYPT_OK   0

Definition at line 14 of file sha256.c.

#define Gamma0 (   x)    (S(x, 7) ^ S(x, 18) ^ R(x, 3))

Definition at line 73 of file sha256.c.

#define Gamma1 (   x)    (S(x, 17) ^ S(x, 19) ^ R(x, 10))

Definition at line 74 of file sha256.c.

#define LOAD32H (   x,
 
)    STMT_BEGIN x = ntohl(get_uint32((const char*)y)); STMT_END

Definition at line 18 of file sha256.c.

#define Maj (   x,
  y,
 
)    (((x | y) & z) | (x & y))

Definition at line 68 of file sha256.c.

#define MIN (   x,
 
)    ( ((x)<(y))?(x):(y) )

Definition at line 26 of file sha256.c.

#define R (   x,
 
)    (((x)&0xFFFFFFFFUL)>>(n))

Definition at line 70 of file sha256.c.

#define RND (   a,
  b,
  c,
  d,
  e,
  f,
  g,
  h,
  i,
  ki 
)
Value:
t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i];   \
     t1 = Sigma0(a) + Maj(a, b, c);                  \
     d += t0;                                        \
     h  = t0 + t1;
#define RORc (   x,
 
)    ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)

Definition at line 24 of file sha256.c.

#define S (   x,
 
)    RORc((x),(n))

Definition at line 69 of file sha256.c.

#define Sigma0 (   x)    (S(x, 2) ^ S(x, 13) ^ S(x, 22))

Definition at line 71 of file sha256.c.

#define Sigma1 (   x)    (S(x, 6) ^ S(x, 11) ^ S(x, 25))

Definition at line 72 of file sha256.c.

#define STORE32H (   x,
 
)    STMT_BEGIN set_uint32((char*)y, htonl(x)); STMT_END

Definition at line 19 of file sha256.c.

#define STORE64H (   x,
 
)
Value:
STMT_BEGIN                                \
  set_uint32((char*)y, htonl((uint32_t)((x)>>32)));             \
  set_uint32(((char*)y)+4, htonl((uint32_t)((x)&0xffffffff)));  \
  STMT_END

Definition at line 20 of file sha256.c.


Typedef Documentation

typedef struct sha256_state sha256_state

Function Documentation

static int sha256_compress ( sha256_state md,
unsigned char *  buf 
) [static]

Definition at line 80 of file sha256.c.

{
    uint32_t S[8], W[64], t0, t1;
#ifdef LTC_SMALL_CODE
    uint32_t t;
#endif
    int i;

    /* copy state into S */
    for (i = 0; i < 8; i++) {
        S[i] = md->state[i];
    }

    /* copy the state into 512-bits into W[0..15] */
    for (i = 0; i < 16; i++) {
        LOAD32H(W[i], buf + (4*i));
    }

    /* fill W[16..63] */
    for (i = 16; i < 64; i++) {
        W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
    }

    /* Compress */
#ifdef LTC_SMALL_CODE
#define RND(a,b,c,d,e,f,g,h,i)                         \
     t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i];   \
     t1 = Sigma0(a) + Maj(a, b, c);                    \
     d += t0;                                          \
     h  = t0 + t1;

     for (i = 0; i < 64; ++i) {
         RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i);
         t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4];
         S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t;
     }
#else
#define RND(a,b,c,d,e,f,g,h,i,ki)                    \
     t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i];   \
     t1 = Sigma0(a) + Maj(a, b, c);                  \
     d += t0;                                        \
     h  = t0 + t1;

    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98);
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491);
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf);
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5);
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b);
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1);
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4);
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5);
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98);
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01);
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be);
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3);
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74);
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe);
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7);
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174);
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1);
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786);
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6);
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc);
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f);
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa);
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc);
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da);
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152);
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d);
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8);
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7);
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3);
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147);
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351);
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967);
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85);
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138);
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc);
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13);
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354);
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb);
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e);
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85);
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1);
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b);
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70);
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3);
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819);
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624);
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585);
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070);
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116);
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08);
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c);
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5);
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3);
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a);
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f);
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3);
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee);
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f);
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814);
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208);
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa);
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb);
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7);
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2);

#undef RND

#endif

    /* feedback */
    for (i = 0; i < 8; i++) {
        md->state[i] = md->state[i] + S[i];
    }
    return CRYPT_OK;
}

Here is the caller graph for this function:

static int sha256_done ( sha256_state md,
unsigned char *  out 
) [static]

Terminate the hash to get the digest.

Parameters:
mdThe hash state
out[out] The destination of the hash (32 bytes)
Returns:
CRYPT_OK if successful

Definition at line 280 of file sha256.c.

{
    int i;

    LTC_ARGCHK(md  != NULL);
    LTC_ARGCHK(out != NULL);

    if (md->curlen >= sizeof(md->buf)) {
       return CRYPT_INVALID_ARG;
    }


    /* increase the length of the message */
    md->length += md->curlen * 8;

    /* append the '1' bit */
    md->buf[md->curlen++] = (unsigned char)0x80;

    /* if the length is currently above 56 bytes we append zeros
     * then compress.  Then we can fall back to padding zeros and length
     * encoding like normal.
     */
    if (md->curlen > 56) {
        while (md->curlen < 64) {
            md->buf[md->curlen++] = (unsigned char)0;
        }
        sha256_compress(md, md->buf);
        md->curlen = 0;
    }

    /* pad upto 56 bytes of zeroes */
    while (md->curlen < 56) {
        md->buf[md->curlen++] = (unsigned char)0;
    }

    /* store length */
    STORE64H(md->length, md->buf+56);
    sha256_compress(md, md->buf);

    /* copy output */
    for (i = 0; i < 8; i++) {
        STORE32H(md->state[i], out+(4*i));
    }
#ifdef LTC_CLEAN_STACK
    zeromem(md, sizeof(sha256_state));
#endif
    return CRYPT_OK;
}

Here is the call graph for this function:

static int sha256_init ( sha256_state md) [static]

Initialize the hash state.

Parameters:
mdThe hash state you wish to initialize
Returns:
CRYPT_OK if successful

Definition at line 215 of file sha256.c.

{
    LTC_ARGCHK(md != NULL);

    md->curlen = 0;
    md->length = 0;
    md->state[0] = 0x6A09E667UL;
    md->state[1] = 0xBB67AE85UL;
    md->state[2] = 0x3C6EF372UL;
    md->state[3] = 0xA54FF53AUL;
    md->state[4] = 0x510E527FUL;
    md->state[5] = 0x9B05688CUL;
    md->state[6] = 0x1F83D9ABUL;
    md->state[7] = 0x5BE0CD19UL;
    return CRYPT_OK;
}
static int sha256_process ( sha256_state md,
const unsigned char *  in,
unsigned long  inlen 
) [static]

Process a block of memory though the hash.

Parameters:
mdThe hash state
inThe data to hash
inlenThe length of the data (octets)
Returns:
CRYPT_OK if successful

Definition at line 239 of file sha256.c.

{
    unsigned long n;
    int           err;
    LTC_ARGCHK(md != NULL);
    LTC_ARGCHK(in != NULL);
    if (md->curlen > sizeof(md->buf)) {
       return CRYPT_INVALID_ARG;
    }
    while (inlen > 0) {
        if (md->curlen == 0 && inlen >= 64) {
           if ((err = sha256_compress (md, (unsigned char *)in)) != CRYPT_OK) {
              return err;
           }
           md->length += 64 * 8;
           in             += 64;
           inlen          -= 64;
        } else {
           n = MIN(inlen, (64 - md->curlen));
           memcpy(md->buf + md->curlen, in, (size_t)n);
           md->curlen += n;
           in             += n;
           inlen          -= n;
           if (md->curlen == 64) {
              if ((err = sha256_compress (md, md->buf)) != CRYPT_OK) {
                 return err;
              }
              md->length += 8*64;
              md->curlen = 0;
           }
       }
    }
    return CRYPT_OK;
}

Here is the call graph for this function: