Back to index

salome-smesh  6.5.0
Public Member Functions | Public Attributes | Friends
R4 Class Reference

#include <Rn.h>

Inheritance diagram for R4:
Inheritance graph
[legend]
Collaboration diagram for R4:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 R4 ()
 R4 (R a, R b, R c, R d)
 R4 (R4 A, R4 B)
R4 operator+ (R4 P) const
R4 operator+= (R4 P)
R4 operator- (R4 P) const
R4 operator-= (R4 P)
R4 operator- () const
R4 operator+ () const
R operator, (R4 P) const
R4 operator* (R c) const
R4 operator*= (R c)
R4 operator/ (R c) const
R4 operator/= (R c)
Roperator[] (int i)
R3 operator+ (R3 P) const
R3 operator+= (R3 P)
R3 operator- (R3 P) const
R3 operator-= (R3 P)
R operator, (R3 P) const
R3 operator^ (R3 P) const
bool DansPave (R3 &xyzMin, R3 &xyzMax)

Public Attributes

R omega
R x
R y
R z

Friends

std::ostream & operator<< (std::ostream &f, const R4 &P)
istream & operator>> (istream &f, R4 &P)
std::ostream & operator<< (std::ostream &f, const R4 *P)
istream & operator>> (istream &f, R4 *P)
R4 operator* (R c, R4 P)
R3 operator* (R c, R3 P)
gp_Pnt gp_pnt (R3 xyz)
gp_Dir gp_dir (R3 xyz)

Detailed Description

Definition at line 179 of file Rn.h.


Constructor & Destructor Documentation

R4::R4 ( ) [inline]

Definition at line 194 of file Rn.h.

:omega(1.0) {}  //les constructeurs

Here is the caller graph for this function:

R4::R4 ( R  a,
R  b,
R  c,
R  d 
) [inline]

Definition at line 195 of file Rn.h.

:R3(a,b,c),omega(d) {}
R4::R4 ( R4  A,
R4  B 
) [inline]

Definition at line 196 of file Rn.h.

:R3(B.x-A.x,B.y-A.y,B.z-A.z),omega(B.omega-A.omega) {}

Member Function Documentation

bool R3::DansPave ( R3 xyzMin,
R3 xyzMax 
) [inline, inherited]

Definition at line 171 of file Rn.h.

    { return xyzMin.x<=x && x<=xyzMax.x &&
             xyzMin.y<=y && y<=xyzMax.y &&
             xyzMin.z<=z && z<=xyzMax.z; }
R4 R4::operator* ( R  c) const [inline]

Reimplemented from R3.

Definition at line 205 of file Rn.h.

{return R4(x*c,y*c,z*c,omega*c);}

Here is the call graph for this function:

R4 R4::operator*= ( R  c) [inline]

Reimplemented from R3.

Definition at line 206 of file Rn.h.

{x *= c; y *= c; z *= c; omega *= c; return *this;}
R3 R3::operator+ ( R3  P) const [inline, inherited]

Definition at line 149 of file Rn.h.

{return R3(x+P.x,y+P.y,z+P.z);}

Here is the call graph for this function:

R4 R4::operator+ ( R4  P) const [inline]

Definition at line 198 of file Rn.h.

{return R4(x+P.x,y+P.y,z+P.z,omega+P.omega);}

Here is the call graph for this function:

R4 R4::operator+ ( ) const [inline]

Reimplemented from R3.

Definition at line 203 of file Rn.h.

{return *this;}
R3 R3::operator+= ( R3  P) [inline, inherited]

Definition at line 150 of file Rn.h.

{x += P.x; y += P.y; z += P.z; return *this;}
R4 R4::operator+= ( R4  P) [inline]

Definition at line 199 of file Rn.h.

{x += P.x;y += P.y;z += P.z;omega += P.omega;return *this;}
R R3::operator, ( R3  P) const [inline, inherited]

Definition at line 155 of file Rn.h.

{return  x*P.x+y*P.y+z*P.z;} // produit scalaire
R R4::operator, ( R4  P) const [inline]

Definition at line 204 of file Rn.h.

{return  x*P.x+y*P.y+z*P.z+omega*P.omega;} // produit scalaire
R3 R3::operator- ( R3  P) const [inline, inherited]

Definition at line 151 of file Rn.h.

{return R3(x-P.x,y-P.y,z-P.z);}

Here is the call graph for this function:

R4 R4::operator- ( R4  P) const [inline]

Definition at line 200 of file Rn.h.

{return R4(x-P.x,y-P.y,z-P.z,omega-P.omega);}

Here is the call graph for this function:

R4 R4::operator- ( ) const [inline]

Reimplemented from R3.

Definition at line 202 of file Rn.h.

{return R4(-x,-y,-z,-omega);}

Here is the call graph for this function:

R3 R3::operator-= ( R3  P) [inline, inherited]

Definition at line 152 of file Rn.h.

{x -= P.x; y -= P.y; z -= P.z; return *this;}
R4 R4::operator-= ( R4  P) [inline]

Definition at line 201 of file Rn.h.

{x -= P.x;y -= P.y;z -= P.z;omega -= P.omega;return *this;}
R4 R4::operator/ ( R  c) const [inline]

Reimplemented from R3.

Definition at line 207 of file Rn.h.

{return R4(x/c,y/c,z/c,omega/c);}

Here is the call graph for this function:

R4 R4::operator/= ( R  c) [inline]

Reimplemented from R3.

Definition at line 208 of file Rn.h.

{x /= c; y /= c; z /= c; omega /= c; return *this;}
R& R4::operator[] ( int  i) [inline]

Reimplemented from R3.

Definition at line 209 of file Rn.h.

{return (&x)[i];}
R3 R3::operator^ ( R3  P) const [inline, inherited]

Definition at line 156 of file Rn.h.

{return R3(y*P.z-z*P.y ,P.x*z-x*P.z, x*P.y-y*P.x);} // produit vectoriel

Here is the call graph for this function:


Friends And Related Function Documentation

gp_Dir gp_dir ( R3  xyz) [friend, inherited]

Definition at line 169 of file Rn.h.

{ return gp_Dir(xyz.x,xyz.y,xyz.z); }
gp_Pnt gp_pnt ( R3  xyz) [friend, inherited]

Definition at line 167 of file Rn.h.

{ return gp_Pnt(xyz.x,xyz.y,xyz.z); }
R3 operator* ( R  c,
R3  P 
) [friend, inherited]

Definition at line 162 of file Rn.h.

{return P*c;}
R4 operator* ( R  c,
R4  P 
) [friend]

Definition at line 210 of file Rn.h.

{return P*c;}
std::ostream& operator<< ( std::ostream &  f,
const R4 P 
) [friend]

Definition at line 181 of file Rn.h.

  { f << P.x << ' ' << P.y << ' ' << P.z << ' ' << P.omega; return f; }
std::ostream& operator<< ( std::ostream &  f,
const R4 P 
) [friend]

Definition at line 186 of file Rn.h.

  { f << P->x << ' ' << P->y << ' ' << P->z << ' ' << P->omega; return f; }
istream& operator>> ( istream &  f,
R4 P 
) [friend]

Definition at line 183 of file Rn.h.

  { f >> P.x >>  P.y >>  P.z >> P.omega ; return f; }
istream& operator>> ( istream &  f,
R4 P 
) [friend]

Definition at line 188 of file Rn.h.

  { f >> P->x >>  P->y >>  P->z >> P->omega ; return f; }

Member Data Documentation

Definition at line 192 of file Rn.h.

R R3::x [inherited]

Definition at line 139 of file Rn.h.

R R3::y [inherited]

Definition at line 139 of file Rn.h.

R R3::z [inherited]

Definition at line 139 of file Rn.h.


The documentation for this class was generated from the following file: