Back to index

salome-smesh  6.5.0
Public Member Functions | Public Attributes | Friends
R3 Class Reference

#include <Rn.h>

Inheritance diagram for R3:
Inheritance graph
[legend]

List of all members.

Public Member Functions

 R3 ()
 R3 (R a, R b, R c)
 R3 (R3 A, R3 B)
 R3 (gp_Pnt P)
 R3 (gp_Vec V)
 R3 (gp_Dir P)
R3 operator+ (R3 P) const
R3 operator+= (R3 P)
R3 operator- (R3 P) const
R3 operator-= (R3 P)
R3 operator- () const
R3 operator+ () const
R operator, (R3 P) const
R3 operator^ (R3 P) const
R3 operator* (R c) const
R3 operator*= (R c)
R3 operator/ (R c) const
R3 operator/= (R c)
Roperator[] (int i)
R3 operator= (gp_Pnt P)
R3 operator= (gp_Dir P)
bool DansPave (R3 &xyzMin, R3 &xyzMax)

Public Attributes

R x
R y
R z

Friends

std::ostream & operator<< (std::ostream &f, const R3 &P)
std::istream & operator>> (std::istream &f, R3 &P)
std::ostream & operator<< (std::ostream &f, const R3 *P)
std::istream & operator>> (std::istream &f, R3 *P)
R3 operator* (R c, R3 P)
gp_Pnt gp_pnt (R3 xyz)
gp_Dir gp_dir (R3 xyz)

Detailed Description

Definition at line 126 of file Rn.h.


Constructor & Destructor Documentation

R3::R3 ( ) [inline]

Definition at line 141 of file Rn.h.

:x(0),y(0),z(0) {}  //les constructeurs

Here is the caller graph for this function:

R3::R3 ( R  a,
R  b,
R  c 
) [inline]

Definition at line 142 of file Rn.h.

:x(a),y(b),z(c)  {}                  //Point ou Vecteur (a,b,c)
R3::R3 ( R3  A,
R3  B 
) [inline]

Definition at line 143 of file Rn.h.

:x(B.x-A.x),y(B.y-A.y),z(B.z-A.z)  {}  //Vecteur AB
R3::R3 ( gp_Pnt  P) [inline]

Definition at line 145 of file Rn.h.

: x(P.X()), y(P.Y()), z(P.Z()) {}      //Point     d'OpenCascade
R3::R3 ( gp_Vec  V) [inline]

Definition at line 146 of file Rn.h.

: x(V.X()), y(V.Y()), z(V.Z()) {}      //Vecteur   d'OpenCascade
R3::R3 ( gp_Dir  P) [inline]

Definition at line 147 of file Rn.h.

: x(P.X()), y(P.Y()), z(P.Z()) {}      //Direction d'OpenCascade

Member Function Documentation

bool R3::DansPave ( R3 xyzMin,
R3 xyzMax 
) [inline]

Definition at line 171 of file Rn.h.

    { return xyzMin.x<=x && x<=xyzMax.x &&
             xyzMin.y<=y && y<=xyzMax.y &&
             xyzMin.z<=z && z<=xyzMax.z; }
R3 R3::operator* ( R  c) const [inline]

Reimplemented in R4.

Definition at line 157 of file Rn.h.

{return R3(x*c,y*c,z*c);}

Here is the call graph for this function:

R3 R3::operator*= ( R  c) [inline]

Reimplemented in R4.

Definition at line 158 of file Rn.h.

{x *= c; y *= c; z *= c; return *this;}
R3 R3::operator+ ( R3  P) const [inline]

Definition at line 149 of file Rn.h.

{return R3(x+P.x,y+P.y,z+P.z);}

Here is the call graph for this function:

R3 R3::operator+ ( ) const [inline]

Reimplemented in R4.

Definition at line 154 of file Rn.h.

{return *this;}
R3 R3::operator+= ( R3  P) [inline]

Definition at line 150 of file Rn.h.

{x += P.x; y += P.y; z += P.z; return *this;}
R R3::operator, ( R3  P) const [inline]

Definition at line 155 of file Rn.h.

{return  x*P.x+y*P.y+z*P.z;} // produit scalaire
R3 R3::operator- ( R3  P) const [inline]

Definition at line 151 of file Rn.h.

{return R3(x-P.x,y-P.y,z-P.z);}

Here is the call graph for this function:

R3 R3::operator- ( ) const [inline]

Reimplemented in R4.

Definition at line 153 of file Rn.h.

{return R3(-x,-y,-z);}

Here is the call graph for this function:

R3 R3::operator-= ( R3  P) [inline]

Definition at line 152 of file Rn.h.

{x -= P.x; y -= P.y; z -= P.z; return *this;}
R3 R3::operator/ ( R  c) const [inline]

Reimplemented in R4.

Definition at line 159 of file Rn.h.

{return R3(x/c,y/c,z/c);}

Here is the call graph for this function:

R3 R3::operator/= ( R  c) [inline]

Reimplemented in R4.

Definition at line 160 of file Rn.h.

{x /= c; y /= c; z /= c; return *this;}
R3 R3::operator= ( gp_Pnt  P) [inline]

Definition at line 164 of file Rn.h.

{return R3(P.X(),P.Y(),P.Z());}

Here is the call graph for this function:

R3 R3::operator= ( gp_Dir  P) [inline]

Definition at line 165 of file Rn.h.

{return R3(P.X(),P.Y(),P.Z());}

Here is the call graph for this function:

R& R3::operator[] ( int  i) [inline]

Reimplemented in R4.

Definition at line 161 of file Rn.h.

{return (&x)[i];}
R3 R3::operator^ ( R3  P) const [inline]

Definition at line 156 of file Rn.h.

{return R3(y*P.z-z*P.y ,P.x*z-x*P.z, x*P.y-y*P.x);} // produit vectoriel

Here is the call graph for this function:


Friends And Related Function Documentation

gp_Dir gp_dir ( R3  xyz) [friend]

Definition at line 169 of file Rn.h.

{ return gp_Dir(xyz.x,xyz.y,xyz.z); }
gp_Pnt gp_pnt ( R3  xyz) [friend]

Definition at line 167 of file Rn.h.

{ return gp_Pnt(xyz.x,xyz.y,xyz.z); }
R3 operator* ( R  c,
R3  P 
) [friend]

Definition at line 162 of file Rn.h.

{return P*c;}
std::ostream& operator<< ( std::ostream &  f,
const R3 P 
) [friend]

Definition at line 128 of file Rn.h.

  { f << P.x << ' ' << P.y << ' ' << P.z ; return f; }
std::ostream& operator<< ( std::ostream &  f,
const R3 P 
) [friend]

Definition at line 133 of file Rn.h.

  { f << P->x << ' ' << P->y << ' ' << P->z ; return f; }
std::istream& operator>> ( std::istream &  f,
R3 P 
) [friend]

Definition at line 130 of file Rn.h.

  { f >> P.x >> P.y >> P.z ; return f; }
std::istream& operator>> ( std::istream &  f,
R3 P 
) [friend]

Definition at line 135 of file Rn.h.

  { f >> P->x >> P->y >> P->z ; return f; }

Member Data Documentation

Definition at line 139 of file Rn.h.

Definition at line 139 of file Rn.h.

Definition at line 139 of file Rn.h.


The documentation for this class was generated from the following file: