Back to index

plt-scheme  4.2.1
Defines | Functions
jidctfst.c File Reference
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h"

Go to the source code of this file.

Defines

#define JPEG_INTERNALS
#define CONST_BITS   8
#define PASS1_BITS   2
#define FIX_1_082392200   ((INT32) 277) /* FIX(1.082392200) */
#define FIX_1_414213562   ((INT32) 362) /* FIX(1.414213562) */
#define FIX_1_847759065   ((INT32) 473) /* FIX(1.847759065) */
#define FIX_2_613125930   ((INT32) 669) /* FIX(2.613125930) */
#define DESCALE(x, n)   RIGHT_SHIFT(x, n)
#define MULTIPLY(var, const)   ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
#define DEQUANTIZE(coef, quantval)   (((IFAST_MULT_TYPE) (coef)) * (quantval))
#define ISHIFT_TEMPS
#define IRIGHT_SHIFT(x, shft)   ((x) >> (shft))
#define IDESCALE(x, n)   ((int) IRIGHT_SHIFT(x, n))

Functions

 jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)

Define Documentation

#define CONST_BITS   8

Definition at line 77 of file jidctfst.c.

#define DEQUANTIZE (   coef,
  quantval 
)    (((IFAST_MULT_TYPE) (coef)) * (quantval))

Definition at line 129 of file jidctfst.c.

#define DESCALE (   x,
 
)    RIGHT_SHIFT(x, n)

Definition at line 111 of file jidctfst.c.

#define FIX_1_082392200   ((INT32) 277) /* FIX(1.082392200) */

Definition at line 92 of file jidctfst.c.

#define FIX_1_414213562   ((INT32) 362) /* FIX(1.414213562) */

Definition at line 93 of file jidctfst.c.

#define FIX_1_847759065   ((INT32) 473) /* FIX(1.847759065) */

Definition at line 94 of file jidctfst.c.

#define FIX_2_613125930   ((INT32) 669) /* FIX(2.613125930) */

Definition at line 95 of file jidctfst.c.

#define IDESCALE (   x,
 
)    ((int) IRIGHT_SHIFT(x, n))

Definition at line 159 of file jidctfst.c.

#define IRIGHT_SHIFT (   x,
  shft 
)    ((x) >> (shft))

Definition at line 153 of file jidctfst.c.

#define ISHIFT_TEMPS

Definition at line 152 of file jidctfst.c.

#define JPEG_INTERNALS

Definition at line 35 of file jidctfst.c.

#define MULTIPLY (   var,
  const 
)    ((DCTELEM) DESCALE((var) * (const), CONST_BITS))

Definition at line 119 of file jidctfst.c.

#define PASS1_BITS   2

Definition at line 78 of file jidctfst.c.


Function Documentation

jpeg_idct_ifast ( j_decompress_ptr  cinfo,
jpeg_component_info compptr,
JCOEFPTR  coef_block,
JSAMPARRAY  output_buf,
JDIMENSION  output_col 
)

Definition at line 168 of file jidctfst.c.

{
  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  DCTELEM tmp10, tmp11, tmp12, tmp13;
  DCTELEM z5, z10, z11, z12, z13;
  JCOEFPTR inptr;
  IFAST_MULT_TYPE * quantptr;
  int * wsptr;
  JSAMPROW outptr;
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  int ctr;
  int workspace[DCTSIZE2];  /* buffers data between passes */
  SHIFT_TEMPS               /* for DESCALE */
  ISHIFT_TEMPS                     /* for IDESCALE */

  /* Pass 1: process columns from input, store into work array. */

  inptr = coef_block;
  quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
  wsptr = workspace;
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
    /* Due to quantization, we will usually find that many of the input
     * coefficients are zero, especially the AC terms.  We can exploit this
     * by short-circuiting the IDCT calculation for any column in which all
     * the AC terms are zero.  In that case each output is equal to the
     * DC coefficient (with scale factor as needed).
     * With typical images and quantization tables, half or more of the
     * column DCT calculations can be simplified this way.
     */
    
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
       inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
       inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
       inptr[DCTSIZE*7] == 0) {
      /* AC terms all zero */
      int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);

      wsptr[DCTSIZE*0] = dcval;
      wsptr[DCTSIZE*1] = dcval;
      wsptr[DCTSIZE*2] = dcval;
      wsptr[DCTSIZE*3] = dcval;
      wsptr[DCTSIZE*4] = dcval;
      wsptr[DCTSIZE*5] = dcval;
      wsptr[DCTSIZE*6] = dcval;
      wsptr[DCTSIZE*7] = dcval;
      
      inptr++;                     /* advance pointers to next column */
      quantptr++;
      wsptr++;
      continue;
    }
    
    /* Even part */

    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);

    tmp10 = tmp0 + tmp2;    /* phase 3 */
    tmp11 = tmp0 - tmp2;

    tmp13 = tmp1 + tmp3;    /* phases 5-3 */
    tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */

    tmp0 = tmp10 + tmp13;   /* phase 2 */
    tmp3 = tmp10 - tmp13;
    tmp1 = tmp11 + tmp12;
    tmp2 = tmp11 - tmp12;
    
    /* Odd part */

    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);

    z13 = tmp6 + tmp5;             /* phase 6 */
    z10 = tmp6 - tmp5;
    z11 = tmp4 + tmp7;
    z12 = tmp4 - tmp7;

    tmp7 = z11 + z13;              /* phase 5 */
    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */

    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */

    tmp6 = tmp12 - tmp7;    /* phase 2 */
    tmp5 = tmp11 - tmp6;
    tmp4 = tmp10 + tmp5;

    wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
    wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
    wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
    wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
    wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
    wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
    wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
    wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);

    inptr++;                /* advance pointers to next column */
    quantptr++;
    wsptr++;
  }
  
  /* Pass 2: process rows from work array, store into output array. */
  /* Note that we must descale the results by a factor of 8 == 2**3, */
  /* and also undo the PASS1_BITS scaling. */

  wsptr = workspace;
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
    outptr = output_buf[ctr] + output_col;
    /* Rows of zeroes can be exploited in the same way as we did with columns.
     * However, the column calculation has created many nonzero AC terms, so
     * the simplification applies less often (typically 5% to 10% of the time).
     * On machines with very fast multiplication, it's possible that the
     * test takes more time than it's worth.  In that case this section
     * may be commented out.
     */
    
#ifndef NO_ZERO_ROW_TEST
    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
       wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
      /* AC terms all zero */
      JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
                              & RANGE_MASK];
      
      outptr[0] = dcval;
      outptr[1] = dcval;
      outptr[2] = dcval;
      outptr[3] = dcval;
      outptr[4] = dcval;
      outptr[5] = dcval;
      outptr[6] = dcval;
      outptr[7] = dcval;

      wsptr += DCTSIZE;            /* advance pointer to next row */
      continue;
    }
#endif
    
    /* Even part */

    tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
    tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);

    tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
    tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
           - tmp13;

    tmp0 = tmp10 + tmp13;
    tmp3 = tmp10 - tmp13;
    tmp1 = tmp11 + tmp12;
    tmp2 = tmp11 - tmp12;

    /* Odd part */

    z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
    z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
    z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
    z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];

    tmp7 = z11 + z13;              /* phase 5 */
    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */

    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */

    tmp6 = tmp12 - tmp7;    /* phase 2 */
    tmp5 = tmp11 - tmp6;
    tmp4 = tmp10 + tmp5;

    /* Final output stage: scale down by a factor of 8 and range-limit */

    outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
                         & RANGE_MASK];
    outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
                         & RANGE_MASK];
    outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
                         & RANGE_MASK];
    outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
                         & RANGE_MASK];
    outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
                         & RANGE_MASK];
    outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
                         & RANGE_MASK];
    outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
                         & RANGE_MASK];
    outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
                         & RANGE_MASK];

    wsptr += DCTSIZE;              /* advance pointer to next row */
  }
}

Here is the caller graph for this function: