Back to index

plt-scheme  4.2.1
Classes | Defines | Typedefs | Enumerations | Functions
ffi_darwin.c File Reference
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>

Go to the source code of this file.

Classes

struct  aix_fd_struct
union  ffi_dblfl

Defines

#define MIN_LINE_SIZE   32

Typedefs

typedef struct aix_fd_struct aix_fd

Enumerations

enum  {
  FLAG_RETURNS_NOTHING = 1 << (31-30), FLAG_RETURNS_FP = 1 << (31-29), FLAG_RETURNS_64BITS = 1 << (31-28), FLAG_RETURNS_128BITS = 1 << (31-31),
  FLAG_ARG_NEEDS_COPY = 1 << (31- 7), FLAG_FP_ARGUMENTS = 1 << (31- 6), FLAG_4_GPR_ARGUMENTS = 1 << (31- 5), FLAG_RETVAL_REFERENCE = 1 << (31- 4)
}
enum  { NUM_GPR_ARG_REGISTERS = 8, NUM_FPR_ARG_REGISTERS = 13 }
enum  { ASM_NEEDS_REGISTERS = 4 }

Functions

void ffi_closure_ASM (void)
void ffi_prep_args (extended_cif *ecif, unsigned *const stack)
static void darwin_adjust_aggregate_sizes (ffi_type *s)
ffi_status ffi_prep_cif_machdep (ffi_cif *cif)
void ffi_call_AIX (extended_cif *, unsigned, unsigned, unsigned *, void(*fn)(), void(*fn2)())
void ffi_call_DARWIN (extended_cif *, unsigned, unsigned, unsigned *, void(*fn)(), void(*fn2)())
void ffi_call (ffi_cif *cif, void(*fn)(), void *rvalue, void **avalue)
static void flush_icache (char *)
static void flush_range (char *, int)
ffi_status ffi_prep_closure_loc (ffi_closure *closure, ffi_cif *cif, void(*fun)(ffi_cif *, void *, void **, void *), void *user_data, void *codeloc)
int ffi_closure_helper_DARWIN (ffi_closure *, void *, unsigned long *, ffi_dblfl *)

Class Documentation

struct aix_fd_struct

Definition at line 472 of file ffi_darwin.c.

Class Members
void * code_pointer
void * toc
union ffi_dblfl

Definition at line 981 of file ffi.c.

Class Members
double d
float f

Define Documentation

#define MIN_LINE_SIZE   32

Typedef Documentation


Enumeration Type Documentation

anonymous enum
Enumerator:
FLAG_RETURNS_NOTHING 
FLAG_RETURNS_FP 
FLAG_RETURNS_64BITS 
FLAG_RETURNS_128BITS 
FLAG_ARG_NEEDS_COPY 
FLAG_FP_ARGUMENTS 
FLAG_4_GPR_ARGUMENTS 
FLAG_RETVAL_REFERENCE 

Definition at line 37 of file ffi_darwin.c.

     {
  /* The assembly depends on these exact flags.  */
  FLAG_RETURNS_NOTHING  = 1 << (31-30), /* These go in cr7  */
  FLAG_RETURNS_FP       = 1 << (31-29),
  FLAG_RETURNS_64BITS   = 1 << (31-28),
  FLAG_RETURNS_128BITS  = 1 << (31-31),

  FLAG_ARG_NEEDS_COPY   = 1 << (31- 7),
  FLAG_FP_ARGUMENTS     = 1 << (31- 6), /* cr1.eq; specified by ABI  */
  FLAG_4_GPR_ARGUMENTS  = 1 << (31- 5),
  FLAG_RETVAL_REFERENCE = 1 << (31- 4)
};
anonymous enum
Enumerator:
NUM_GPR_ARG_REGISTERS 
NUM_FPR_ARG_REGISTERS 

Definition at line 51 of file ffi_darwin.c.

anonymous enum
Enumerator:
ASM_NEEDS_REGISTERS 

Definition at line 55 of file ffi_darwin.c.


Function Documentation

static void darwin_adjust_aggregate_sizes ( ffi_type *  s) [static]

Definition at line 233 of file ffi_darwin.c.

{
  int i;

  if (s->type != FFI_TYPE_STRUCT)
    return;

  s->size = 0;
  for (i = 0; s->elements[i] != NULL; i++)
    {
      ffi_type *p;
      int align;
      
      p = s->elements[i];
      darwin_adjust_aggregate_sizes (p);
      if (i == 0
         && (p->type == FFI_TYPE_UINT64
             || p->type == FFI_TYPE_SINT64
             || p->type == FFI_TYPE_DOUBLE
             || p->alignment == 8))
       align = 8;
      else if (p->alignment == 16 || p->alignment < 4)
       align = p->alignment;
      else
       align = 4;
      s->size = ALIGN(s->size, align) + p->size;
    }
  
  s->size = ALIGN(s->size, s->alignment);
  
  if (s->elements[0]->type == FFI_TYPE_UINT64
      || s->elements[0]->type == FFI_TYPE_SINT64
      || s->elements[0]->type == FFI_TYPE_DOUBLE
      || s->elements[0]->alignment == 8)
    s->alignment = s->alignment > 8 ? s->alignment : 8;
  /* Do not add additional tail padding.  */
}

Here is the caller graph for this function:

void ffi_call ( ffi_cif *  cif,
void(*)()  fn,
void rvalue,
void **  avalue 
)

Definition at line 432 of file ffi_darwin.c.

{
  extended_cif ecif;

  ecif.cif = cif;
  ecif.avalue = avalue;

  /* If the return value is a struct and we don't have a return
     value address then we need to make one.  */

  if ((rvalue == NULL) &&
      (cif->rtype->type == FFI_TYPE_STRUCT))
    {
      ecif.rvalue = alloca(cif->rtype->size);
    }
  else
    ecif.rvalue = rvalue;

  switch (cif->abi)
    {
    case FFI_AIX:
      ffi_call_AIX(&ecif, -cif->bytes, cif->flags, ecif.rvalue, fn,
                 ffi_prep_args);
      break;
    case FFI_DARWIN:
      ffi_call_DARWIN(&ecif, -cif->bytes, cif->flags, ecif.rvalue, fn,
                    ffi_prep_args);
      break;
    default:
      FFI_ASSERT(0);
      break;
    }
}

Here is the call graph for this function:

void ffi_call_AIX ( extended_cif ,
unsigned  ,
unsigned  ,
unsigned *  ,
void(*)()  fn,
void(*)()  fn2 
)

Here is the caller graph for this function:

void ffi_call_DARWIN ( extended_cif ,
unsigned  ,
unsigned  ,
unsigned *  ,
void(*)()  fn,
void(*)()  fn2 
)

Here is the caller graph for this function:

Here is the caller graph for this function:

int ffi_closure_helper_DARWIN ( ffi_closure *  closure,
void rvalue,
unsigned long *  pgr,
ffi_dblfl pfr 
)

Definition at line 630 of file ffi_darwin.c.

{
  /* rvalue is the pointer to space for return value in closure assembly
     pgr is the pointer to where r3-r10 are stored in ffi_closure_ASM
     pfr is the pointer to where f1-f13 are stored in ffi_closure_ASM.  */

  typedef double ldbits[2];

  union ldu
  {
    ldbits lb;
    long double ld;
  };

  void **          avalue;
  ffi_type **      arg_types;
  long             i, avn;
  long             nf;   /* number of floating registers already used.  */
  long             ng;   /* number of general registers already used.  */
  ffi_cif *        cif;
  double           temp;
  unsigned         size_al;
  union ldu        temp_ld;

  cif = closure->cif;
  avalue = alloca(cif->nargs * sizeof(void *));

  nf = 0;
  ng = 0;

  /* Copy the caller's structure return value address so that the closure
     returns the data directly to the caller.  */
  if (cif->rtype->type == FFI_TYPE_STRUCT)
    {
      rvalue = (void *) *pgr;
      pgr++;
      ng++;
    }

  i = 0;
  avn = cif->nargs;
  arg_types = cif->arg_types;

  /* Grab the addresses of the arguments from the stack frame.  */
  while (i < avn)
    {
      switch (arg_types[i]->type)
       {
       case FFI_TYPE_SINT8:
       case FFI_TYPE_UINT8:
         avalue[i] = (char *) pgr + 3;
         ng++;
         pgr++;
         break;

       case FFI_TYPE_SINT16:
       case FFI_TYPE_UINT16:
         avalue[i] = (char *) pgr + 2;
         ng++;
         pgr++;
         break;

       case FFI_TYPE_SINT32:
       case FFI_TYPE_UINT32:
       case FFI_TYPE_POINTER:
         avalue[i] = pgr;
         ng++;
         pgr++;
         break;

       case FFI_TYPE_STRUCT:
         /* Structures that match the basic modes (QI 1 byte, HI 2 bytes,
            SI 4 bytes) are aligned as if they were those modes.  */
         size_al = arg_types[i]->size;
         /* If the first member of the struct is a double, then align
            the struct to double-word.
            Type 3 is defined in include/ffi.h. #define FFI_TYPE_DOUBLE 3.  */
         if (arg_types[i]->elements[0]->type == 3)
           size_al = ALIGN(arg_types[i]->size, 8);
         if (size_al < 3 && cif->abi == FFI_DARWIN)
           avalue[i] = (void*) pgr + 4 - size_al;
         else
           avalue[i] = (void*) pgr;
         ng += (size_al + 3) / 4;
         pgr += (size_al + 3) / 4;
         break;

       case FFI_TYPE_SINT64:
       case FFI_TYPE_UINT64:
         /* Long long ints are passed in two gpr's.  */
         avalue[i] = pgr;
         ng += 2;
         pgr += 2;
         break;

       case FFI_TYPE_FLOAT:
         /* A float value consumes a GPR.
            There are 13 64bit floating point registers.  */
         if (nf < NUM_FPR_ARG_REGISTERS)
           {
             temp = pfr->d;
             pfr->f = (float)temp;
             avalue[i] = pfr;
             pfr++;
           }
         else
           {
             avalue[i] = pgr;
           }
         nf++;
         ng++;
         pgr++;
         break;

       case FFI_TYPE_DOUBLE:
         /* A double value consumes two GPRs.
            There are 13 64bit floating point registers.  */
         if (nf < NUM_FPR_ARG_REGISTERS)
           {
             avalue[i] = pfr;
             pfr++;
           }
         else
           {
             avalue[i] = pgr;
           }
         nf++;
         ng += 2;
         pgr += 2;
         break;

#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE

       case FFI_TYPE_LONGDOUBLE:
         /* A long double value consumes four GPRs and two FPRs.
            There are 13 64bit floating point registers.  */
         if (nf < NUM_FPR_ARG_REGISTERS - 1)
           {
             avalue[i] = pfr;
             pfr += 2;
           }
         /* Here we have the situation where one part of the long double
            is stored in fpr13 and the other part is already on the stack.
            We use a union to pass the long double to avalue[i].  */
         else if (nf == NUM_FPR_ARG_REGISTERS - 1)
           {
             memcpy (&temp_ld.lb[0], pfr, sizeof(ldbits));
             memcpy (&temp_ld.lb[1], pgr + 2, sizeof(ldbits));
             avalue[i] = &temp_ld.ld;
           }
         else
           {
             avalue[i] = pgr;
           }
         nf += 2;
         ng += 4;
         pgr += 4;
         break;
#endif
       default:
         FFI_ASSERT(0);
       }
      i++;
    }

  (closure->fun) (cif, rvalue, avalue, closure->user_data);

  /* Tell ffi_closure_ASM to perform return type promotions.  */
  return cif->rtype->type;
}
void ffi_prep_args ( extended_cif ecif,
unsigned *const  stack 
)

Definition at line 83 of file ffi_darwin.c.

{
  const unsigned bytes = ecif->cif->bytes;
  const unsigned flags = ecif->cif->flags;

  /* 'stacktop' points at the previous backchain pointer.  */
  unsigned *const stacktop = stack + (bytes / sizeof(unsigned));

  /* 'fpr_base' points at the space for fpr1, and grows upwards as
     we use FPR registers.  */
  double *fpr_base = (double*) (stacktop - ASM_NEEDS_REGISTERS) - NUM_FPR_ARG_REGISTERS;
  int fparg_count = 0;


  /* 'next_arg' grows up as we put parameters in it.  */
  unsigned *next_arg = stack + 6; /* 6 reserved positions.  */

  int i = ecif->cif->nargs;
  double double_tmp;
  void **p_argv = ecif->avalue;
  unsigned gprvalue;
  ffi_type** ptr = ecif->cif->arg_types;
  char *dest_cpy;
  unsigned size_al = 0;

  /* Check that everything starts aligned properly.  */
  FFI_ASSERT(((unsigned)(char *)stack & 0xF) == 0);
  FFI_ASSERT(((unsigned)(char *)stacktop & 0xF) == 0);
  FFI_ASSERT((bytes & 0xF) == 0);

  /* Deal with return values that are actually pass-by-reference.
     Rule:
     Return values are referenced by r3, so r4 is the first parameter.  */

  if (flags & FLAG_RETVAL_REFERENCE)
    *next_arg++ = (unsigned)(char *)ecif->rvalue;

  /* Now for the arguments.  */
  for (;
       i > 0;
       i--, ptr++, p_argv++)
    {
      switch ((*ptr)->type)
       {
       /* If a floating-point parameter appears before all of the general-
          purpose registers are filled, the corresponding GPRs that match
          the size of the floating-point parameter are skipped.  */
       case FFI_TYPE_FLOAT:
         double_tmp = *(float *)*p_argv;
         if (fparg_count >= NUM_FPR_ARG_REGISTERS)
           *(double *)next_arg = double_tmp;
         else
           *fpr_base++ = double_tmp;
         next_arg++;
         fparg_count++;
         FFI_ASSERT(flags & FLAG_FP_ARGUMENTS);
         break;

       case FFI_TYPE_DOUBLE:
         double_tmp = *(double *)*p_argv;
         if (fparg_count >= NUM_FPR_ARG_REGISTERS)
           *(double *)next_arg = double_tmp;
         else
           *fpr_base++ = double_tmp;
         next_arg += 2;
         fparg_count++;
         FFI_ASSERT(flags & FLAG_FP_ARGUMENTS);
         break;

#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE

       case FFI_TYPE_LONGDOUBLE:
         double_tmp = ((double *)*p_argv)[0];
         if (fparg_count >= NUM_FPR_ARG_REGISTERS)
           *(double *)next_arg = double_tmp;
         else
           *fpr_base++ = double_tmp;
         next_arg += 2;
         fparg_count++;
         double_tmp = ((double *)*p_argv)[1];
         if (fparg_count >= NUM_FPR_ARG_REGISTERS)
           *(double *)next_arg = double_tmp;
         else
           *fpr_base++ = double_tmp;
         next_arg += 2;
         fparg_count++;
         FFI_ASSERT(flags & FLAG_FP_ARGUMENTS);
         break;
#endif
       case FFI_TYPE_UINT64:
       case FFI_TYPE_SINT64:
         *(long long *)next_arg = *(long long *)*p_argv;
         next_arg+=2;
         break;
       case FFI_TYPE_UINT8:
         gprvalue = *(unsigned char *)*p_argv;
         goto putgpr;
       case FFI_TYPE_SINT8:
         gprvalue = *(signed char *)*p_argv;
         goto putgpr;
       case FFI_TYPE_UINT16:
         gprvalue = *(unsigned short *)*p_argv;
         goto putgpr;
       case FFI_TYPE_SINT16:
         gprvalue = *(signed short *)*p_argv;
         goto putgpr;

       case FFI_TYPE_STRUCT:
         dest_cpy = (char *) next_arg;

         /* Structures that match the basic modes (QI 1 byte, HI 2 bytes,
            SI 4 bytes) are aligned as if they were those modes.
            Structures with 3 byte in size are padded upwards.  */
         size_al = (*ptr)->size;
         /* If the first member of the struct is a double, then align
            the struct to double-word.
            Type 3 is defined in include/ffi.h. #define FFI_TYPE_DOUBLE 3.  */
         if ((*ptr)->elements[0]->type == 3)
           size_al = ALIGN((*ptr)->size, 8);
         if (size_al < 3 && ecif->cif->abi == FFI_DARWIN)
           dest_cpy += 4 - size_al;

         memcpy((char *)dest_cpy, (char *)*p_argv, size_al);
         next_arg += (size_al + 3) / 4;
         break;

       case FFI_TYPE_INT:
       case FFI_TYPE_UINT32:
       case FFI_TYPE_SINT32:
       case FFI_TYPE_POINTER:
         gprvalue = *(unsigned *)*p_argv;
       putgpr:
         *next_arg++ = gprvalue;
         break;
       default:
         break;
       }
    }

  /* Check that we didn't overrun the stack...  */
  //FFI_ASSERT(gpr_base <= stacktop - ASM_NEEDS_REGISTERS);
  //FFI_ASSERT((unsigned *)fpr_base
  //        <= stacktop - ASM_NEEDS_REGISTERS - NUM_GPR_ARG_REGISTERS);
  //FFI_ASSERT(flags & FLAG_4_GPR_ARGUMENTS || intarg_count <= 4);
}
ffi_status ffi_prep_cif_machdep ( ffi_cif *  cif)

Definition at line 272 of file ffi_darwin.c.

{
  /* All this is for the DARWIN ABI.  */
  int i;
  ffi_type **ptr;
  unsigned bytes;
  int fparg_count = 0, intarg_count = 0;
  unsigned flags = 0;
  unsigned size_al = 0;

  /* All the machine-independent calculation of cif->bytes will be wrong.
     All the calculation of structure sizes will also be wrong.
     Redo the calculation for DARWIN.  */

  if (cif->abi == FFI_DARWIN)
    {
      darwin_adjust_aggregate_sizes (cif->rtype);
      for (i = 0; i < cif->nargs; i++)
       darwin_adjust_aggregate_sizes (cif->arg_types[i]);
    }

  /* Space for the frame pointer, callee's LR, CR, etc, and for
     the asm's temp regs.  */

  bytes = (6 + ASM_NEEDS_REGISTERS) * sizeof(long);

  /* Return value handling.  The rules are as follows:
     - 32-bit (or less) integer values are returned in gpr3;
     - Structures of size <= 4 bytes also returned in gpr3;
     - 64-bit integer values and structures between 5 and 8 bytes are returned
       in gpr3 and gpr4;
     - Single/double FP values are returned in fpr1;
     - Long double FP (if not equivalent to double) values are returned in
       fpr1 and fpr2;
     - Larger structures values are allocated space and a pointer is passed
       as the first argument.  */
  switch (cif->rtype->type)
    {

#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
    case FFI_TYPE_LONGDOUBLE:
      flags |= FLAG_RETURNS_128BITS;
      flags |= FLAG_RETURNS_FP;
      break;
#endif

    case FFI_TYPE_DOUBLE:
      flags |= FLAG_RETURNS_64BITS;
      /* Fall through.  */
    case FFI_TYPE_FLOAT:
      flags |= FLAG_RETURNS_FP;
      break;

    case FFI_TYPE_UINT64:
    case FFI_TYPE_SINT64:
      flags |= FLAG_RETURNS_64BITS;
      break;

    case FFI_TYPE_STRUCT:
      flags |= FLAG_RETVAL_REFERENCE;
      flags |= FLAG_RETURNS_NOTHING;
      intarg_count++;
      break;
    case FFI_TYPE_VOID:
      flags |= FLAG_RETURNS_NOTHING;
      break;

    default:
      /* Returns 32-bit integer, or similar.  Nothing to do here.  */
      break;
    }

  /* The first NUM_GPR_ARG_REGISTERS words of integer arguments, and the
     first NUM_FPR_ARG_REGISTERS fp arguments, go in registers; the rest
     goes on the stack.  Structures are passed as a pointer to a copy of
     the structure. Stuff on the stack needs to keep proper alignment.  */
  for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++)
    {
      switch ((*ptr)->type)
       {
       case FFI_TYPE_FLOAT:
       case FFI_TYPE_DOUBLE:
         fparg_count++;
         /* If this FP arg is going on the stack, it must be
            8-byte-aligned.  */
         if (fparg_count > NUM_FPR_ARG_REGISTERS
             && intarg_count%2 != 0)
           intarg_count++;
         break;

#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE

       case FFI_TYPE_LONGDOUBLE:
         fparg_count += 2;
         /* If this FP arg is going on the stack, it must be
            8-byte-aligned.  */
         if (fparg_count > NUM_FPR_ARG_REGISTERS
             && intarg_count%2 != 0)
           intarg_count++;
         intarg_count +=2;
         break;
#endif

       case FFI_TYPE_UINT64:
       case FFI_TYPE_SINT64:
         /* 'long long' arguments are passed as two words, but
            either both words must fit in registers or both go
            on the stack.  If they go on the stack, they must
            be 8-byte-aligned.  */
         if (intarg_count == NUM_GPR_ARG_REGISTERS-1
             || (intarg_count >= NUM_GPR_ARG_REGISTERS && intarg_count%2 != 0))
           intarg_count++;
         intarg_count += 2;
         break;

       case FFI_TYPE_STRUCT:
         size_al = (*ptr)->size;
         /* If the first member of the struct is a double, then align
            the struct to double-word.
            Type 3 is defined in include/ffi.h. #define FFI_TYPE_DOUBLE 3.  */
         if ((*ptr)->elements[0]->type == 3)
           size_al = ALIGN((*ptr)->size, 8);
         intarg_count += (size_al + 3) / 4;
         break;

       default:
         /* Everything else is passed as a 4-byte word in a GPR, either
            the object itself or a pointer to it.  */
         intarg_count++;
         break;
       }
    }

  if (fparg_count != 0)
    flags |= FLAG_FP_ARGUMENTS;

  /* Space for the FPR registers, if needed.  */
  if (fparg_count != 0)
    bytes += NUM_FPR_ARG_REGISTERS * sizeof(double);

  /* Stack space.  */
  if ((intarg_count + 2 * fparg_count) > NUM_GPR_ARG_REGISTERS)
    bytes += (intarg_count + 2 * fparg_count) * sizeof(long);
  else
    bytes += NUM_GPR_ARG_REGISTERS * sizeof(long);

  /* The stack space allocated needs to be a multiple of 16 bytes.  */
  bytes = (bytes + 15) & ~0xF;

  cif->flags = flags;
  cif->bytes = bytes;

  return FFI_OK;
}

Here is the call graph for this function:

ffi_status ffi_prep_closure_loc ( ffi_closure *  closure,
ffi_cif *  cif,
void(*)(ffi_cif *, void *, void **, void *)  fun,
void user_data,
void codeloc 
)

Definition at line 531 of file ffi_darwin.c.

{
  unsigned int *tramp;
  struct ffi_aix_trampoline_struct *tramp_aix;
  aix_fd *fd;

  switch (cif->abi)
    {
    case FFI_DARWIN:

      FFI_ASSERT (cif->abi == FFI_DARWIN);

      tramp = (unsigned int *) &closure->tramp[0];
      tramp[0] = 0x7c0802a6;  /*   mflr    r0  */
      tramp[1] = 0x429f000d;  /*   bcl-    20,4*cr7+so,0x10  */
      tramp[4] = 0x7d6802a6;  /*   mflr    r11  */
      tramp[5] = 0x818b0000;  /*   lwz     r12,0(r11) function address  */
      tramp[6] = 0x7c0803a6;  /*   mtlr    r0   */
      tramp[7] = 0x7d8903a6;  /*   mtctr   r12  */
      tramp[8] = 0x816b0004;  /*   lwz     r11,4(r11) static chain  */
      tramp[9] = 0x4e800420;  /*   bctr  */
      tramp[2] = (unsigned long) ffi_closure_ASM; /* function  */
      tramp[3] = (unsigned long) codeloc; /* context  */

      closure->cif = cif;
      closure->fun = fun;
      closure->user_data = user_data;

      /* Flush the icache. Only necessary on Darwin.  */
      flush_range(codeloc, FFI_TRAMPOLINE_SIZE);

      break;

    case FFI_AIX:

      tramp_aix = (struct ffi_aix_trampoline_struct *) (closure->tramp);
      fd = (aix_fd *)(void *)ffi_closure_ASM;

      FFI_ASSERT (cif->abi == FFI_AIX);

      tramp_aix->code_pointer = fd->code_pointer;
      tramp_aix->toc = fd->toc;
      tramp_aix->static_chain = codeloc;
      closure->cif = cif;
      closure->fun = fun;
      closure->user_data = user_data;

    default:

      FFI_ASSERT(0);
      break;
    }
  return FFI_OK;
}

Here is the call graph for this function:

static void flush_icache ( char *  addr) [static]

Definition at line 591 of file ffi_darwin.c.

{
#ifndef _AIX
  __asm__ volatile (
              "dcbf 0,%0\n"
              "\tsync\n"
              "\ticbi 0,%0\n"
              "\tsync\n"
              "\tisync"
              : : "r"(addr) : "memory");
#endif
}

Here is the caller graph for this function:

static void flush_range ( char *  addr1,
int  size 
) [static]

Definition at line 605 of file ffi_darwin.c.

{
#define MIN_LINE_SIZE 32
  int i;
  for (i = 0; i < size; i += MIN_LINE_SIZE)
    flush_icache(addr1+i);
  flush_icache(addr1+size-1);
}

Here is the call graph for this function:

Here is the caller graph for this function: