Back to index

plt-scheme  4.2.1
Classes | Defines | Typedefs | Functions | Variables
cordbscs.c File Reference
#include "gc.h"
#include "cord.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

Go to the source code of this file.

Classes

union  CordRep
struct  CordRep::Concatenation
struct  CordRep::Function
struct  CordRep::Generic
struct  substr_args
struct  ForestElement

Defines

#define OUT_OF_MEMORY
#define ABORT(msg)   { fprintf(stderr, "%s\n", msg); abort(); }
#define MAX_LEFT_LEN   255
#define CONCAT_HDR   1
#define FN_HDR   4
#define SUBSTR_HDR   6
#define IS_CONCATENATION(s)   (((CordRep *)s)->generic.header == CONCAT_HDR)
#define IS_FUNCTION(s)   ((((CordRep *)s)->generic.header & FN_HDR) != 0)
#define IS_SUBSTR(s)   (((CordRep *)s)->generic.header == SUBSTR_HDR)
#define LEN(s)   (((CordRep *)s) -> generic.len)
#define DEPTH(s)   (((CordRep *)s) -> generic.depth)
#define GEN_LEN(s)   (CORD_IS_STRING(s) ? strlen(s) : LEN(s))
#define LEFT_LEN(c)
#define SHORT_LIMIT   (sizeof(CordRep) - 1)
#define SUBSTR_LIMIT   (10 * SHORT_LIMIT)

Typedefs

typedef void(* oom_fn )(void)
typedef unsigned long word
typedef ForestElement Forest [MAX_DEPTH]

Functions

void CORD_dump_inner (CORD x, unsigned n)
void CORD_dump (CORD x)
CORD CORD_cat_char_star (CORD x, const char *y, size_t leny)
CORD CORD_cat (CORD x, CORD y)
CORD CORD_from_fn (CORD_fn fn, void *client_data, size_t len)
size_t CORD_len (CORD x)
char CORD_index_access_fn (size_t i, void *client_data)
char CORD_apply_access_fn (size_t i, void *client_data)
CORD CORD_substr_closure (CORD x, size_t i, size_t n, CORD_fn f)
CORD CORD_substr_checked (CORD x, size_t i, size_t n)
CORD CORD_substr (CORD x, size_t i, size_t n)
int CORD_iter5 (CORD x, size_t i, CORD_iter_fn f1, CORD_batched_iter_fn f2, void *client_data)
int CORD_iter (CORD x, CORD_iter_fn f1, void *client_data)
int CORD_riter4 (CORD x, size_t i, CORD_iter_fn f1, void *client_data)
int CORD_riter (CORD x, CORD_iter_fn f1, void *client_data)
void CORD_init_min_len ()
void CORD_init_forest (ForestElement *forest, size_t max_len)
void CORD_add_forest (ForestElement *forest, CORD x, size_t len)
CORD CORD_concat_forest (ForestElement *forest, size_t expected_len)
void CORD_balance_insert (CORD x, size_t len, ForestElement *forest)
CORD CORD_balance (CORD x)
void CORD__extend_path (register CORD_pos p)
char CORD__pos_fetch (register CORD_pos p)
void CORD__next (register CORD_pos p)
void CORD__prev (register CORD_pos p)
char CORD_pos_fetch (register CORD_pos p)
void CORD_next (CORD_pos p)
void CORD_prev (CORD_pos p)
size_t CORD_pos_to_index (CORD_pos p)
CORD CORD_pos_to_cord (CORD_pos p)
int CORD_pos_valid (CORD_pos p)
void CORD_set_pos (CORD_pos p, CORD x, size_t i)

Variables

oom_fn CORD_oom_fn = (oom_fn) 0
static size_t min_len [MAX_DEPTH]
static int min_len_init = 0
int CORD_max_len

Class Documentation

union CordRep

Definition at line 40 of file cordbscs.c.

Collaboration diagram for CordRep:
Class Members
struct Concatenation concatenation
struct Function function
struct Generic generic
char string
struct CordRep::Concatenation

Definition at line 41 of file cordbscs.c.

Class Members
char depth
char header
CORD left
unsigned char left_len
word len
char null
CORD right
struct CordRep::Function

Definition at line 53 of file cordbscs.c.

Class Members
void * client_data
char depth
CORD_fn fn
char header
char left_len
word len
char null
struct CordRep::Generic

Definition at line 62 of file cordbscs.c.

Class Members
char depth
char header
char left_len
word len
char null
struct substr_args

Definition at line 318 of file cordbscs.c.

Collaboration diagram for substr_args:
Class Members
CordRep * sa_cord
size_t sa_index
struct ForestElement

Definition at line 580 of file cordbscs.c.

Class Members
CORD c
size_t len

Define Documentation

#define ABORT (   msg)    { fprintf(stderr, "%s\n", msg); abort(); }

Definition at line 36 of file cordbscs.c.

#define CONCAT_HDR   1

Definition at line 72 of file cordbscs.c.

#define DEPTH (   s)    (((CordRep *)s) -> generic.depth)

Definition at line 89 of file cordbscs.c.

#define FN_HDR   4

Definition at line 74 of file cordbscs.c.

#define GEN_LEN (   s)    (CORD_IS_STRING(s) ? strlen(s) : LEN(s))

Definition at line 90 of file cordbscs.c.

#define IS_CONCATENATION (   s)    (((CordRep *)s)->generic.header == CONCAT_HDR)

Definition at line 82 of file cordbscs.c.

#define IS_FUNCTION (   s)    ((((CordRep *)s)->generic.header & FN_HDR) != 0)

Definition at line 84 of file cordbscs.c.

#define IS_SUBSTR (   s)    (((CordRep *)s)->generic.header == SUBSTR_HDR)

Definition at line 86 of file cordbscs.c.

#define LEFT_LEN (   c)
Value:
((c) -> left_len != 0? \
                            (c) -> left_len \
                            : (CORD_IS_STRING((c) -> left) ? \
                                   (c) -> len - GEN_LEN((c) -> right) \
                                   : LEN((c) -> left)))

Definition at line 92 of file cordbscs.c.

#define LEN (   s)    (((CordRep *)s) -> generic.len)

Definition at line 88 of file cordbscs.c.

#define MAX_LEFT_LEN   255

Definition at line 48 of file cordbscs.c.

#define OUT_OF_MEMORY
Value:
{  if (CORD_oom_fn != (oom_fn) 0) (*CORD_oom_fn)(); \
                       ABORT("Out of memory\n"); }

Definition at line 34 of file cordbscs.c.

#define SHORT_LIMIT   (sizeof(CordRep) - 1)

Definition at line 98 of file cordbscs.c.

#define SUBSTR_HDR   6

Definition at line 75 of file cordbscs.c.

#define SUBSTR_LIMIT   (10 * SHORT_LIMIT)

Definition at line 355 of file cordbscs.c.


Typedef Documentation

Definition at line 591 of file cordbscs.c.

typedef void(* oom_fn)(void)

Definition at line 30 of file cordbscs.c.

typedef unsigned long word

Definition at line 38 of file cordbscs.c.


Function Documentation

void CORD__extend_path ( register CORD_pos  p)

Definition at line 730 of file cordbscs.c.

{
     register struct CORD_pe * current_pe = &(p[0].path[p[0].path_len]);
     register CORD top = current_pe -> pe_cord;
     register size_t pos = p[0].cur_pos;
     register size_t top_pos = current_pe -> pe_start_pos;
     register size_t top_len = GEN_LEN(top);
     
     /* Fill in the rest of the path. */
       while(!CORD_IS_STRING(top) && IS_CONCATENATION(top)) {
        register struct Concatenation * conc =
                     &(((CordRep *)top) -> concatenation);
        register size_t left_len;
        
        left_len = LEFT_LEN(conc);
        current_pe++;
        if (pos >= top_pos + left_len) {
            current_pe -> pe_cord = top = conc -> right;
            current_pe -> pe_start_pos = top_pos = top_pos + left_len;
            top_len -= left_len;
        } else {
            current_pe -> pe_cord = top = conc -> left;
            current_pe -> pe_start_pos = top_pos;
            top_len = left_len;
        }
        p[0].path_len++;
       }
     /* Fill in leaf description for fast access. */
       if (CORD_IS_STRING(top)) {
         p[0].cur_leaf = top;
         p[0].cur_start = top_pos;
         p[0].cur_end = top_pos + top_len;
       } else {
         p[0].cur_end = 0;
       }
       if (pos >= top_pos + top_len) p[0].path_len = CORD_POS_INVALID;
}

Here is the caller graph for this function:

void CORD__next ( register CORD_pos  p)

Definition at line 779 of file cordbscs.c.

{
    register size_t cur_pos = p[0].cur_pos + 1;
    register struct CORD_pe * current_pe = &((p)[0].path[(p)[0].path_len]);
    register CORD leaf = current_pe -> pe_cord;
    
    /* Leaf is not a string or we're at end of leaf */
    p[0].cur_pos = cur_pos;
    if (!CORD_IS_STRING(leaf)) {
       /* Function leaf     */
       register struct Function * f = &(((CordRep *)leaf) -> function);
       register size_t start_pos = current_pe -> pe_start_pos;
       register size_t end_pos = start_pos + f -> len;
       
       if (cur_pos < end_pos) {
         /* Fill cache and return. */
           register size_t i;
           register size_t limit = cur_pos + FUNCTION_BUF_SZ;
           register CORD_fn fn = f -> fn;
           register void * client_data = f -> client_data;
           
           if (limit > end_pos) {
               limit = end_pos;
           }
           for (i = cur_pos; i < limit; i++) {
               p[0].function_buf[i - cur_pos] =
                     (*fn)(i - start_pos, client_data);
           }
           p[0].cur_start = cur_pos;
           p[0].cur_leaf = p[0].function_buf;
           p[0].cur_end = limit;
           return;
       }
    }
    /* End of leaf   */
    /* Pop the stack until we find two concatenation nodes with the   */
    /* same start position: this implies we were in left part.        */
    {
       while (p[0].path_len > 0
              && current_pe[0].pe_start_pos != current_pe[-1].pe_start_pos) {
           p[0].path_len--;
           current_pe--;
       }
       if (p[0].path_len == 0) {
           p[0].path_len = CORD_POS_INVALID;
            return;
       }
    }
    p[0].path_len--;
    CORD__extend_path(p);
}

Here is the call graph for this function:

Here is the caller graph for this function:

char CORD__pos_fetch ( register CORD_pos  p)

Definition at line 768 of file cordbscs.c.

{
    /* Leaf is a function node */
    struct CORD_pe * pe = &((p)[0].path[(p)[0].path_len]);
    CORD leaf = pe -> pe_cord;
    register struct Function * f = &(((CordRep *)leaf) -> function);
    
    if (!IS_FUNCTION(leaf)) ABORT("CORD_pos_fetch: bad leaf");
    return ((*(f -> fn))(p[0].cur_pos - pe -> pe_start_pos, f -> client_data));
}

Here is the caller graph for this function:

void CORD__prev ( register CORD_pos  p)

Definition at line 831 of file cordbscs.c.

{
    register struct CORD_pe * pe = &(p[0].path[p[0].path_len]);
    
    if (p[0].cur_pos == 0) {
        p[0].path_len = CORD_POS_INVALID;
        return;
    }
    p[0].cur_pos--;
    if (p[0].cur_pos >= pe -> pe_start_pos) return;
    
    /* Beginning of leaf    */
    
    /* Pop the stack until we find two concatenation nodes with the   */
    /* different start position: this implies we were in right part.  */
    {
       register struct CORD_pe * current_pe = &((p)[0].path[(p)[0].path_len]);
       
       while (p[0].path_len > 0
              && current_pe[0].pe_start_pos == current_pe[-1].pe_start_pos) {
           p[0].path_len--;
           current_pe--;
       }
    }
    p[0].path_len--;
    CORD__extend_path(p);
}

Here is the call graph for this function:

Here is the caller graph for this function:

void CORD_add_forest ( ForestElement forest,
CORD  x,
size_t  len 
)

Definition at line 632 of file cordbscs.c.

{
    register int i = 0;
    register CORD sum = CORD_EMPTY;
    register size_t sum_len = 0;
    
    while (len > min_len[i + 1]) {
       if (forest[i].c != 0) {
           sum = CORD_cat(forest[i].c, sum);
           sum_len += forest[i].len;
           forest[i].c = 0;
       }
        i++;
    }
    /* Sum has depth at most 1 greter than what would be required     */
    /* for balance.                                            */
    sum = CORD_cat(sum, x);
    sum_len += len;
    /* If x was a leaf, then sum is now balanced.  To see this        */
    /* consider the two cases in which forest[i-1] either is or is    */
    /* not empty.                                              */
    while (sum_len >= min_len[i]) {
       if (forest[i].c != 0) {
           sum = CORD_cat(forest[i].c, sum);
           sum_len += forest[i].len;
           /* This is again balanced, since sum was balanced, and has */
           /* allowable depth that differs from i by at most 1.       */
           forest[i].c = 0;
       }
        i++;
    }
    i--;
    forest[i].c = sum;
    forest[i].len = sum_len;
}

Here is the call graph for this function:

Here is the caller graph for this function:

char CORD_apply_access_fn ( size_t  i,
void client_data 
)

Definition at line 330 of file cordbscs.c.

{
    register struct substr_args *descr = (struct substr_args *)client_data;
    register struct Function * fn_cord = &(descr->sa_cord->function);
    
    return((*(fn_cord->fn))(i + descr->sa_index, fn_cord->client_data));
}

Here is the caller graph for this function:

Definition at line 708 of file cordbscs.c.

{
    Forest forest;
    register size_t len;
    
    if (x == 0) return(0);
    if (CORD_IS_STRING(x)) return(x);
    if (!min_len_init) CORD_init_min_len();
    len = LEN(x);
    CORD_init_forest(forest, len);
    CORD_balance_insert(x, len, forest);
    return(CORD_concat_forest(forest, len));
}

Here is the call graph for this function:

Here is the caller graph for this function:

void CORD_balance_insert ( CORD  x,
size_t  len,
ForestElement forest 
)

Definition at line 687 of file cordbscs.c.

{
    register int depth;
    
    if (CORD_IS_STRING(x)) {
        CORD_add_forest(forest, x, len);
    } else if (IS_CONCATENATION(x)
               && ((depth = DEPTH(x)) >= MAX_DEPTH
                   || len < min_len[depth])) {
       register struct Concatenation * conc
                     = &(((CordRep *)x) -> concatenation);
       size_t left_len = LEFT_LEN(conc);
       
       CORD_balance_insert(conc -> left, left_len, forest);
       CORD_balance_insert(conc -> right, len - left_len, forest);
    } else /* function or balanced */ {
       CORD_add_forest(forest, x, len);
    }
}

Here is the call graph for this function:

Here is the caller graph for this function:

CORD CORD_cat ( CORD  x,
CORD  y 
)

Definition at line 231 of file cordbscs.c.

{
    register size_t result_len;
    register int depth;
    register size_t lenx;
    
    if (x == CORD_EMPTY) return(y);
    if (y == CORD_EMPTY) return(x);
    if (CORD_IS_STRING(y)) {
        return(CORD_cat_char_star(x, y, strlen(y)));
    } else if (CORD_IS_STRING(x)) {
        lenx = strlen(x);
        depth = DEPTH(y) + 1;
    } else {
        register int depthy = DEPTH(y);
        
        lenx = LEN(x);
        depth = DEPTH(x) + 1;
        if (depthy >= depth) depth = depthy + 1;
    }
    result_len = lenx + LEN(y);
    {
       register struct Concatenation * result;
       
       result = GC_NEW(struct Concatenation);
       if (result == 0) OUT_OF_MEMORY;
       result->header = CONCAT_HDR;
       result->depth = depth;
       if (lenx <= MAX_LEFT_LEN) result->left_len = lenx;
       result->len = result_len;
       result->left = x;
       result->right = y;
       if (depth >= MAX_DEPTH) {
           return(CORD_balance((CORD)result));
       } else {
           return((CORD) result);
       }
    }
}

Here is the call graph for this function:

Here is the caller graph for this function:

CORD CORD_cat_char_star ( CORD  x,
const char *  y,
size_t  leny 
)

Definition at line 147 of file cordbscs.c.

{
    register size_t result_len;
    register size_t lenx;
    register int depth;
    
    if (x == CORD_EMPTY) return(y);
    if (leny == 0) return(x);
    if (CORD_IS_STRING(x)) {
        lenx = strlen(x);
        result_len = lenx + leny;
        if (result_len <= SHORT_LIMIT) {
            register char * result = GC_MALLOC_ATOMIC(result_len+1);
        
            if (result == 0) OUT_OF_MEMORY;
            memcpy(result, x, lenx);
            memcpy(result + lenx, y, leny);
            result[result_len] = '\0';
            return((CORD) result);
        } else {
            depth = 1;
        }
    } else {
       register CORD right;
       register CORD left;
       register char * new_right;
       register size_t right_len;
       
       lenx = LEN(x);
       
        if (leny <= SHORT_LIMIT/2
           && IS_CONCATENATION(x)
            && CORD_IS_STRING(right = ((CordRep *)x) -> concatenation.right)) {
            /* Merge y into right part of x. */
            if (!CORD_IS_STRING(left = ((CordRep *)x) -> concatenation.left)) {
              right_len = lenx - LEN(left);
            } else if (((CordRep *)x) -> concatenation.left_len != 0) {
                right_len = lenx - ((CordRep *)x) -> concatenation.left_len;
            } else {
              right_len = strlen(right);
            }
            result_len = right_len + leny;  /* length of new_right */
            if (result_len <= SHORT_LIMIT) {
              new_right = GC_MALLOC_ATOMIC(result_len + 1);
              memcpy(new_right, right, right_len);
              memcpy(new_right + right_len, y, leny);
              new_right[result_len] = '\0';
              y = new_right;
              leny = result_len;
              x = left;
              lenx -= right_len;
              /* Now fall through to concatenate the two pieces: */
            }
            if (CORD_IS_STRING(x)) {
                depth = 1;
            } else {
                depth = DEPTH(x) + 1;
            }
        } else {
            depth = DEPTH(x) + 1;
        }
        result_len = lenx + leny;
    }
    {
      /* The general case; lenx, result_len is known: */
       register struct Concatenation * result;
       
       result = GC_NEW(struct Concatenation);
       if (result == 0) OUT_OF_MEMORY;
       result->header = CONCAT_HDR;
       result->depth = depth;
       if (lenx <= MAX_LEFT_LEN) result->left_len = lenx;
       result->len = result_len;
       result->left = x;
       result->right = y;
       if (depth >= MAX_DEPTH) {
           return(CORD_balance((CORD)result));
       } else {
           return((CORD) result);
       }
    }
}

Here is the call graph for this function:

Here is the caller graph for this function:

CORD CORD_concat_forest ( ForestElement forest,
size_t  expected_len 
)

Definition at line 668 of file cordbscs.c.

{
    register int i = 0;
    CORD sum = 0;
    size_t sum_len = 0;
    
    while (sum_len != expected_len) {
       if (forest[i].c != 0) {
           sum = CORD_cat(forest[i].c, sum);
           sum_len += forest[i].len;
       }
        i++;
    }
    return(sum);
}

Here is the call graph for this function:

Here is the caller graph for this function:

Definition at line 141 of file cordbscs.c.

{
    CORD_dump_inner(x, 0);
    fflush(stdout);
}

Here is the call graph for this function:

void CORD_dump_inner ( CORD  x,
unsigned  n 
)

Definition at line 104 of file cordbscs.c.

{
    register size_t i;
    
    for (i = 0; i < (size_t)n; i++) {
        fputs("  ", stdout);
    }
    if (x == 0) {
       fputs("NIL\n", stdout);
    } else if (CORD_IS_STRING(x)) {
        for (i = 0; i <= SHORT_LIMIT; i++) {
            if (x[i] == '\0') break;
            putchar(x[i]);
        }
        if (x[i] != '\0') fputs("...", stdout);
        putchar('\n');
    } else if (IS_CONCATENATION(x)) {
        register struct Concatenation * conc =
                            &(((CordRep *)x) -> concatenation);
        printf("Concatenation: %p (len: %d, depth: %d)\n",
               x, (int)(conc -> len), (int)(conc -> depth));
        CORD_dump_inner(conc -> left, n+1);
        CORD_dump_inner(conc -> right, n+1);
    } else /* function */{
        register struct Function * func =
                            &(((CordRep *)x) -> function);
        if (IS_SUBSTR(x)) printf("(Substring) ");
        printf("Function: %p (len: %d): ", x, (int)(func -> len));
        for (i = 0; i < 20 && i < func -> len; i++) {
            putchar((*(func -> fn))(i, func -> client_data));
        }
        if (i < func -> len) fputs("...", stdout);
        putchar('\n');
    }
}

Here is the caller graph for this function:

CORD CORD_from_fn ( CORD_fn  fn,
void client_data,
size_t  len 
)

Definition at line 273 of file cordbscs.c.

{
    if (len <= 0) return(0);
    if (len <= SHORT_LIMIT) {
        register char * result;
        register size_t i;
        char buf[SHORT_LIMIT+1];
        register char c;
        
        for (i = 0; i < len; i++) {
            c = (*fn)(i, client_data);
            if (c == '\0') goto gen_case;
            buf[i] = c;
        }
        buf[i] = '\0';
        result = GC_MALLOC_ATOMIC(len+1);
        if (result == 0) OUT_OF_MEMORY;
        strcpy(result, buf);
        result[len] = '\0';
        return((CORD) result);
    }
  gen_case:
    {
       register struct Function * result;
       
       result = GC_NEW(struct Function);
       if (result == 0) OUT_OF_MEMORY;
       result->header = FN_HDR;
       /* depth is already 0 */
       result->len = len;
       result->fn = fn;
       result->client_data = client_data;
       return((CORD) result);
    }
}

Here is the caller graph for this function:

char CORD_index_access_fn ( size_t  i,
void client_data 
)

Definition at line 323 of file cordbscs.c.

{
    register struct substr_args *descr = (struct substr_args *)client_data;
    
    return(((char *)(descr->sa_cord))[i + descr->sa_index]);
}

Here is the caller graph for this function:

void CORD_init_forest ( ForestElement forest,
size_t  max_len 
)

Definition at line 616 of file cordbscs.c.

{
    register int i;
    
    for (i = 0; i < MAX_DEPTH; i++) {
       forest[i].c = 0;
       if (min_len[i] > max_len) return;
    }
    ABORT("Cord too long");
}

Here is the caller graph for this function:

Definition at line 597 of file cordbscs.c.

{
    register int i;
    register size_t last, previous, current;
        
    min_len[0] = previous = 1;
    min_len[1] = last = 2;
    for (i = 2; i < MAX_DEPTH; i++) {
       current = last + previous;
       if (current < last) /* overflow */ current = last;
       min_len[i] = current;
       previous = last;
       last = current;
    }
    CORD_max_len = last - 1;
    min_len_init = 1;
}

Here is the caller graph for this function:

int CORD_iter ( CORD  x,
CORD_iter_fn  f1,
void client_data 
)

Definition at line 512 of file cordbscs.c.

{
    return(CORD_iter5(x, 0, f1, CORD_NO_FN, client_data));
}

Here is the call graph for this function:

int CORD_iter5 ( CORD  x,
size_t  i,
CORD_iter_fn  f1,
CORD_batched_iter_fn  f2,
void client_data 
)

Definition at line 463 of file cordbscs.c.

{
    if (x == 0) return(0);
    if (CORD_IS_STRING(x)) {
       register const char *p = x+i;
       
       if (*p == '\0') ABORT("2nd arg to CORD_iter5 too big");
        if (f2 != CORD_NO_FN) {
            return((*f2)(p, client_data));
        } else {
           while (*p) {
                if ((*f1)(*p, client_data)) return(1);
                p++;
           }
           return(0);
        }
    } else if (IS_CONCATENATION(x)) {
       register struct Concatenation * conc
                     = &(((CordRep *)x) -> concatenation);
       
       
       if (i > 0) {
           register size_t left_len = LEFT_LEN(conc);
           
           if (i >= left_len) {
               return(CORD_iter5(conc -> right, i - left_len, f1, f2,
                              client_data));
           }
       }
       if (CORD_iter5(conc -> left, i, f1, f2, client_data)) {
           return(1);
       }
       return(CORD_iter5(conc -> right, 0, f1, f2, client_data));
    } else /* function */ {
        register struct Function * f = &(((CordRep *)x) -> function);
        register size_t j;
        register size_t lim = f -> len;
        
        for (j = i; j < lim; j++) {
            if ((*f1)((*(f -> fn))(j, f -> client_data), client_data)) {
                return(1);
            }
        }
        return(0);
    }
}

Here is the call graph for this function:

Here is the caller graph for this function:

size_t CORD_len ( CORD  x)

Definition at line 309 of file cordbscs.c.

{
    if (x == 0) {
       return(0);
    } else {
       return(GEN_LEN(x));
    }
}

Here is the caller graph for this function:

Definition at line 875 of file cordbscs.c.

{
    if (p[0].cur_pos < p[0].cur_end - 1) {
       p[0].cur_pos++;
    } else {
       CORD__next(p);
    }
}

Here is the call graph for this function:

char CORD_pos_fetch ( register CORD_pos  p)

Definition at line 866 of file cordbscs.c.

{
    if (p[0].cur_start <= p[0].cur_pos && p[0].cur_pos < p[0].cur_end) {
       return(p[0].cur_leaf[p[0].cur_pos - p[0].cur_start]);
    } else {
        return(CORD__pos_fetch(p));
    }
}

Here is the call graph for this function:

Definition at line 898 of file cordbscs.c.

{
    return(p[0].path[0].pe_cord);
}
size_t CORD_pos_to_index ( CORD_pos  p)

Definition at line 893 of file cordbscs.c.

{
    return(p[0].cur_pos);
}

Definition at line 903 of file cordbscs.c.

{
    return(p[0].path_len != CORD_POS_INVALID);
}

Definition at line 884 of file cordbscs.c.

{
    if (p[0].cur_end != 0 && p[0].cur_pos > p[0].cur_start) {
       p[0].cur_pos--;
    } else {
       CORD__prev(p);
    }
}

Here is the call graph for this function:

int CORD_riter ( CORD  x,
CORD_iter_fn  f1,
void client_data 
)

Definition at line 560 of file cordbscs.c.

{
    return(CORD_riter4(x, CORD_len(x) - 1, f1, client_data));
}

Here is the call graph for this function:

int CORD_riter4 ( CORD  x,
size_t  i,
CORD_iter_fn  f1,
void client_data 
)

Definition at line 517 of file cordbscs.c.

{
    if (x == 0) return(0);
    if (CORD_IS_STRING(x)) {
       register const char *p = x + i;
       register char c;
               
       for(;;) {
           c = *p;
           if (c == '\0') ABORT("2nd arg to CORD_riter4 too big");
            if ((*f1)(c, client_data)) return(1);
           if (p == x) break;
            p--;
       }
       return(0);
    } else if (IS_CONCATENATION(x)) {
       register struct Concatenation * conc
                     = &(((CordRep *)x) -> concatenation);
       register CORD left_part = conc -> left;
       register size_t left_len;
       
       left_len = LEFT_LEN(conc);
       if (i >= left_len) {
           if (CORD_riter4(conc -> right, i - left_len, f1, client_data)) {
              return(1);
           }
           return(CORD_riter4(left_part, left_len - 1, f1, client_data));
       } else {
           return(CORD_riter4(left_part, i, f1, client_data));
       }
    } else /* function */ {
        register struct Function * f = &(((CordRep *)x) -> function);
        register size_t j;
        
        for (j = i; ; j--) {
            if ((*f1)((*(f -> fn))(j, f -> client_data), client_data)) {
                return(1);
            }
            if (j == 0) return(0);
        }
    }
}

Here is the call graph for this function:

Here is the caller graph for this function:

void CORD_set_pos ( CORD_pos  p,
CORD  x,
size_t  i 
)

Definition at line 908 of file cordbscs.c.

{
    if (x == CORD_EMPTY) {
       p[0].path_len = CORD_POS_INVALID;
       return;
    }
    p[0].path[0].pe_cord = x;
    p[0].path[0].pe_start_pos = 0;
    p[0].path_len = 0;
    p[0].cur_pos = i;
    CORD__extend_path(p);
}

Here is the call graph for this function:

Here is the caller graph for this function:

CORD CORD_substr ( CORD  x,
size_t  i,
size_t  n 
)

Definition at line 446 of file cordbscs.c.

{
    register size_t len = CORD_len(x);
    
    if (i >= len || n <= 0) return(0);
       /* n < 0 is impossible in a correct C implementation, but      */
       /* quite possible  under SunOS 4.X.                            */
    if (i + n > len) n = len - i;
#   ifndef __STDC__
      if (i < 0) ABORT("CORD_substr: second arg. negative");
       /* Possible only if both client and C implementation are buggy.       */
       /* But empirically this happens frequently.                    */
#   endif
    return(CORD_substr_checked(x, i, n));
}

Here is the call graph for this function:

Here is the caller graph for this function:

CORD CORD_substr_checked ( CORD  x,
size_t  i,
size_t  n 
)

Definition at line 361 of file cordbscs.c.

{
    if (CORD_IS_STRING(x)) {
        if (n > SUBSTR_LIMIT) {
            return(CORD_substr_closure(x, i, n, CORD_index_access_fn));
        } else {
            register char * result = GC_MALLOC_ATOMIC(n+1);
            
            if (result == 0) OUT_OF_MEMORY;
            strncpy(result, x+i, n);
            result[n] = '\0';
            return(result);
        }
    } else if (IS_CONCATENATION(x)) {
       register struct Concatenation * conc
                     = &(((CordRep *)x) -> concatenation);
       register size_t left_len;
       register size_t right_len;
       
       left_len = LEFT_LEN(conc);
       right_len = conc -> len - left_len;
       if (i >= left_len) {
           if (n == right_len) return(conc -> right);
           return(CORD_substr_checked(conc -> right, i - left_len, n));
       } else if (i+n <= left_len) {
           if (n == left_len) return(conc -> left);
           return(CORD_substr_checked(conc -> left, i, n));
       } else {
           /* Need at least one character from each side. */
           register CORD left_part;
           register CORD right_part;
           register size_t left_part_len = left_len - i;
       
           if (i == 0) {
               left_part = conc -> left;
           } else {
               left_part = CORD_substr_checked(conc -> left, i, left_part_len);
           }
           if (i + n == right_len + left_len) {
                right_part = conc -> right;
           } else {
                right_part = CORD_substr_checked(conc -> right, 0,
                                             n - left_part_len);
           }
           return(CORD_cat(left_part, right_part));
       }
    } else /* function */ {
        if (n > SUBSTR_LIMIT) {
            if (IS_SUBSTR(x)) {
              /* Avoid nesting substring nodes.  */
              register struct Function * f = &(((CordRep *)x) -> function);
              register struct substr_args *descr =
                            (struct substr_args *)(f -> client_data);
              
              return(CORD_substr_closure((CORD)descr->sa_cord,
                                      i + descr->sa_index,
                                      n, f -> fn));
            } else {
                return(CORD_substr_closure(x, i, n, CORD_apply_access_fn));
            }
        } else {
            char * result;
            register struct Function * f = &(((CordRep *)x) -> function);
            char buf[SUBSTR_LIMIT+1];
            register char * p = buf;
            register char c;
            register int j;
            register int lim = i + n;
            
            for (j = i; j < lim; j++) {
              c = (*(f -> fn))(j, f -> client_data);
              if (c == '\0') {
                  return(CORD_substr_closure(x, i, n, CORD_apply_access_fn));
              }
              *p++ = c;
            }
            *p = '\0';
            result = GC_MALLOC_ATOMIC(n+1);
            if (result == 0) OUT_OF_MEMORY;
            strcpy(result, buf);
            return(result);
        }
    }
}

Here is the call graph for this function:

Here is the caller graph for this function:

CORD CORD_substr_closure ( CORD  x,
size_t  i,
size_t  n,
CORD_fn  f 
)

Definition at line 342 of file cordbscs.c.

{
    register struct substr_args * sa = GC_NEW(struct substr_args);
    CORD result;
    
    if (sa == 0) OUT_OF_MEMORY;
    sa->sa_cord = (CordRep *)x;
    sa->sa_index = i;
    result = CORD_from_fn(f, (void *)sa, n);
    ((CordRep *)result) -> function.header = SUBSTR_HDR;
    return (result);
}

Here is the call graph for this function:

Here is the caller graph for this function:


Variable Documentation

Definition at line 589 of file cordbscs.c.

Definition at line 32 of file cordbscs.c.

size_t min_len[MAX_DEPTH] [static]

Definition at line 585 of file cordbscs.c.

int min_len_init = 0 [static]

Definition at line 587 of file cordbscs.c.