Back to index

php5  5.3.10
Classes | Defines | Typedefs | Functions | Variables
zend_strtod.c File Reference
#include <zend_operators.h>
#include <zend_strtod.h>
#include <stddef.h>
#include <stdio.h>
#include <ctype.h>
#include <stdarg.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "locale.h"
#include "errno.h"
#include "float.h"

Go to the source code of this file.

Classes

union  _double
struct  Bigint

Defines

#define IEEE_LITTLE_ENDIAN
#define Long   int32_t
#define ULong   uint32_t
#define MALLOC   malloc
#define CONST   const
#define Sign_Extend(a, b)   /*no-op*/
#define value(x)   ((x).d)
#define word0(x)   ((x).ul[1])
#define word1(x)   ((x).ul[0])
#define Storeinc(a, b, c)
#define Exp_shift   20
#define Exp_shift1   20
#define Exp_msk1   0x100000
#define Exp_msk11   0x100000
#define Exp_mask   0x7ff00000
#define P   53
#define Bias   1023
#define IEEE_Arith
#define Emin   (-1022)
#define Exp_1   0x3ff00000
#define Exp_11   0x3ff00000
#define Ebits   11
#define Frac_mask   0xfffff
#define Frac_mask1   0xfffff
#define Ten_pmax   22
#define Bletch   0x10
#define Bndry_mask   0xfffff
#define Bndry_mask1   0xfffff
#define LSB   1
#define Sign_bit   0x80000000
#define Log2P   1
#define Tiny0   0
#define Tiny1   1
#define Quick_max   14
#define Int_max   14
#define Infinite(x)   (word0(x) == 0x7ff00000) /* sufficient test for here */
#define rounded_product(a, b)   a *= b
#define rounded_quotient(a, b)   a /= b
#define Big0   (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
#define Big1   0xffffffff
#define Pack_32
#define Kmax   15
#define _THREAD_PRIVATE_MUTEX_LOCK(x)
#define _THREAD_PRIVATE_MUTEX_UNLOCK(x)
#define Bcopy(x, y)
#define d0   word0(d)
#define d1   word1(d)
#define d0   word0(d)
#define d1   word1(d)
#define n_bigtens   5

Typedefs

typedef struct Bigint

Functions

static void destroy_freelist (void)
ZEND_API int zend_startup_strtod (void)
ZEND_API int zend_shutdown_strtod (void)
static BigintBalloc (int k)
static void Bfree (Bigint *v)
static char * rv_alloc (int i)
static char * nrv_alloc (char *s, char **rve, int n)
static Bigintmultadd (Bigint *b, int m, int a)
static int hi0bits (ULong x)
static int lo0bits (ULong *y)
static Biginti2b (int i)
static Bigintmult (Bigint *a, Bigint *b)
static Bigints2b (CONST char *s, int nd0, int nd, ULong y9)
static Bigintpow5mult (Bigint *b, int k)
static Bigintlshift (Bigint *b, int k)
static int cmp (Bigint *a, Bigint *b)
static Bigintdiff (Bigint *a, Bigint *b)
static double ulp (double _x)
static double b2d (Bigint *a, int *e)
static Bigintd2b (double _d, int *e, int *bits)
static double ratio (Bigint *a, Bigint *b)
static int quorem (Bigint *b, Bigint *S)
ZEND_API void zend_freedtoa (char *s)
ZEND_API char * zend_dtoa (double _d, int mode, int ndigits, int *decpt, int *sign, char **rve)
ZEND_API double zend_strtod (CONST char *s00, char **se)
ZEND_API double zend_hex_strtod (const char *str, char **endptr)
ZEND_API double zend_oct_strtod (const char *str, char **endptr)

Variables

static Bigintfreelist [Kmax+1]
static Bigintp5s
static CONST double tens []
static CONST double bigtens [] = { 1e16, 1e32, 1e64, 1e128, 1e256 }
static CONST double tinytens [] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 }

Class Documentation

union _double

Definition at line 274 of file zend_strtod.c.

Class Members
double d
ULong ul
struct Bigint

Definition at line 419 of file zend_strtod.c.

Collaboration diagram for Bigint:
Class Members
int k
int maxwds
struct Bigint * next
int sign
int wds
ULong x

Define Documentation

#define _THREAD_PRIVATE_MUTEX_LOCK (   x)

Definition at line 443 of file zend_strtod.c.

Definition at line 444 of file zend_strtod.c.

#define Bcopy (   x,
 
)
Value:
memcpy((char *)&x->sign, (char *)&y->sign, \
              y->wds*sizeof(Long) + 2*sizeof(int))

Definition at line 514 of file zend_strtod.c.

#define Bias   1023

Definition at line 312 of file zend_strtod.c.

#define Big0   (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))

Definition at line 403 of file zend_strtod.c.

#define Big1   0xffffffff

Definition at line 404 of file zend_strtod.c.

#define Bletch   0x10

Definition at line 321 of file zend_strtod.c.

#define Bndry_mask   0xfffff

Definition at line 322 of file zend_strtod.c.

#define Bndry_mask1   0xfffff

Definition at line 323 of file zend_strtod.c.

#define CONST   const

Definition at line 258 of file zend_strtod.c.

#define d0   word0(d)
#define d0   word0(d)
#define d1   word1(d)
#define d1   word1(d)
#define Ebits   11

Definition at line 317 of file zend_strtod.c.

#define Emin   (-1022)

Definition at line 314 of file zend_strtod.c.

#define Exp_1   0x3ff00000

Definition at line 315 of file zend_strtod.c.

#define Exp_11   0x3ff00000

Definition at line 316 of file zend_strtod.c.

#define Exp_mask   0x7ff00000

Definition at line 310 of file zend_strtod.c.

#define Exp_msk1   0x100000

Definition at line 308 of file zend_strtod.c.

#define Exp_msk11   0x100000

Definition at line 309 of file zend_strtod.c.

#define Exp_shift   20

Definition at line 306 of file zend_strtod.c.

#define Exp_shift1   20

Definition at line 307 of file zend_strtod.c.

#define Frac_mask   0xfffff

Definition at line 318 of file zend_strtod.c.

#define Frac_mask1   0xfffff

Definition at line 319 of file zend_strtod.c.

#define IEEE_Arith

Definition at line 313 of file zend_strtod.c.

Definition at line 152 of file zend_strtod.c.

#define Infinite (   x)    (word0(x) == 0x7ff00000) /* sufficient test for here */

Definition at line 331 of file zend_strtod.c.

#define Int_max   14

Definition at line 330 of file zend_strtod.c.

#define Kmax   15

Definition at line 417 of file zend_strtod.c.

#define Log2P   1

Definition at line 326 of file zend_strtod.c.

#define Long   int32_t

Definition at line 176 of file zend_strtod.c.

#define LSB   1

Definition at line 324 of file zend_strtod.c.

#define MALLOC   malloc

Definition at line 200 of file zend_strtod.c.

#define n_bigtens   5

Definition at line 1269 of file zend_strtod.c.

#define P   53

Definition at line 311 of file zend_strtod.c.

#define Pack_32

Definition at line 413 of file zend_strtod.c.

#define Quick_max   14

Definition at line 329 of file zend_strtod.c.

#define rounded_product (   a,
 
)    a *= b

Definition at line 399 of file zend_strtod.c.

#define rounded_quotient (   a,
 
)    a /= b

Definition at line 400 of file zend_strtod.c.

#define Sign_bit   0x80000000

Definition at line 325 of file zend_strtod.c.

#define Sign_Extend (   a,
 
)    /*no-op*/

Definition at line 265 of file zend_strtod.c.

#define Storeinc (   a,
  b,
 
)
Value:
(((unsigned short *)a)[1] = (unsigned short)b, \
              ((unsigned short *)a)[0] = (unsigned short)c, a++)

Definition at line 292 of file zend_strtod.c.

#define Ten_pmax   22

Definition at line 320 of file zend_strtod.c.

#define Tiny0   0

Definition at line 327 of file zend_strtod.c.

#define Tiny1   1

Definition at line 328 of file zend_strtod.c.

#define ULong   uint32_t

Definition at line 177 of file zend_strtod.c.

#define value (   x)    ((x).d)

Definition at line 278 of file zend_strtod.c.

#define word0 (   x)    ((x).ul[1])

Definition at line 280 of file zend_strtod.c.

#define word1 (   x)    ((x).ul[0])

Definition at line 281 of file zend_strtod.c.


Typedef Documentation

typedef struct Bigint

Definition at line 425 of file zend_strtod.c.


Function Documentation

static double b2d ( Bigint a,
int e 
) [static]

Definition at line 1031 of file zend_strtod.c.

{
       ULong *xa, *xa0, w, y, z;
       int k;
       volatile _double d;
#ifdef VAX
       ULong d0, d1;
#else
#define d0 word0(d)
#define d1 word1(d)
#endif

       xa0 = a->x;
       xa = xa0 + a->wds;
       y = *--xa;
#ifdef DEBUG
       if (!y) Bug("zero y in b2d");
#endif
       k = hi0bits(y);
       *e = 32 - k;
#ifdef Pack_32
       if (k < Ebits) {
              d0 = Exp_1 | y >> (Ebits - k);
              w = xa > xa0 ? *--xa : 0;
              d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
              goto ret_d;
       }
       z = xa > xa0 ? *--xa : 0;
       if (k -= Ebits) {
              d0 = Exp_1 | y << k | z >> (32 - k);
              y = xa > xa0 ? *--xa : 0;
              d1 = z << k | y >> (32 - k);
       }
       else {
              d0 = Exp_1 | y;
              d1 = z;
       }
#else
       if (k < Ebits + 16) {
              z = xa > xa0 ? *--xa : 0;
              d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
              w = xa > xa0 ? *--xa : 0;
              y = xa > xa0 ? *--xa : 0;
              d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
              goto ret_d;
       }
       z = xa > xa0 ? *--xa : 0;
       w = xa > xa0 ? *--xa : 0;
       k -= Ebits + 16;
       d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
       y = xa > xa0 ? *--xa : 0;
       d1 = w << k + 16 | y << k;
#endif
ret_d:
#ifdef VAX
       word0(d) = d0 >> 16 | d0 << 16;
       word1(d) = d1 >> 16 | d1 << 16;
#else
#undef d0
#undef d1
#endif
       return value(d);
}

Here is the call graph for this function:

Here is the caller graph for this function:

static Bigint* Balloc ( int  k) [static]

Definition at line 477 of file zend_strtod.c.

{
       int x;
       Bigint *rv;

       if (k > Kmax) {
              zend_error(E_ERROR, "Balloc() allocation exceeds list boundary");
       }

       _THREAD_PRIVATE_MUTEX_LOCK(dtoa_mutex);
       if ((rv = freelist[k])) {
              freelist[k] = rv->next;
       } else {
              x = 1 << k;
              rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(Long));
              if (!rv) {
                     _THREAD_PRIVATE_MUTEX_UNLOCK(dtoa_mutex);
                     zend_error(E_ERROR, "Balloc() failed to allocate memory");
              }
              rv->k = k;
              rv->maxwds = x;
       }
       _THREAD_PRIVATE_MUTEX_UNLOCK(dtoa_mutex);
       rv->sign = rv->wds = 0;
       return rv;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static void Bfree ( Bigint v) [static]

Definition at line 504 of file zend_strtod.c.

{
       if (v) {
              _THREAD_PRIVATE_MUTEX_LOCK(dtoa_mutex);
              v->next = freelist[v->k];
              freelist[v->k] = v;
              _THREAD_PRIVATE_MUTEX_UNLOCK(dtoa_mutex);
       }
}

Here is the caller graph for this function:

static int cmp ( Bigint a,
Bigint b 
) [static]

Definition at line 888 of file zend_strtod.c.

{
       ULong *xa, *xa0, *xb, *xb0;
       int i, j;

       i = a->wds;
       j = b->wds;
#ifdef DEBUG
       if (i > 1 && !a->x[i-1])
              Bug("cmp called with a->x[a->wds-1] == 0");
       if (j > 1 && !b->x[j-1])
              Bug("cmp called with b->x[b->wds-1] == 0");
#endif
       if (i -= j)
              return i;
       xa0 = a->x;
       xa = xa0 + j;
       xb0 = b->x;
       xb = xb0 + j;
       for(;;) {
              if (*--xa != *--xb)
                     return *xa < *xb ? -1 : 1;
              if (xa <= xa0)
                     break;
       }
       return 0;
}

Here is the caller graph for this function:

static Bigint* d2b ( double  _d,
int e,
int bits 
) [static]

Definition at line 1097 of file zend_strtod.c.

{
       Bigint *b;
       int de, i, k;
       ULong *x, y, z;
       volatile _double d;
#ifdef VAX
       ULong d0, d1;
#endif

       value(d) = _d;
#ifdef VAX
       d0 = word0(d) >> 16 | word0(d) << 16;
       d1 = word1(d) >> 16 | word1(d) << 16;
#else
#define d0 word0(d)
#define d1 word1(d)
#endif

#ifdef Pack_32
       b = Balloc(1);
#else
       b = Balloc(2);
#endif
       x = b->x;

       z = d0 & Frac_mask;
       d0 &= 0x7fffffff;   /* clear sign bit, which we ignore */
#ifdef Sudden_Underflow
       de = (int)(d0 >> Exp_shift);
#ifndef IBM
       z |= Exp_msk11;
#endif
#else
       if ((de = (int)(d0 >> Exp_shift)))
              z |= Exp_msk1;
#endif
#ifdef Pack_32
       if ((y = d1)) {
              if ((k = lo0bits(&y))) {
                     x[0] = y | (z << (32 - k));
                     z >>= k;
              } else {
                     x[0] = y;
              }
              i = b->wds = (x[1] = z) ? 2 : 1;
       } else {
#ifdef DEBUG
              if (!z)
                     Bug("Zero passed to d2b");
#endif
              k = lo0bits(&z);
              x[0] = z;
              i = b->wds = 1;
              k += 32;
       }
#else
       if (y = d1) {
              if (k = lo0bits(&y)) {
                     if (k >= 16) {
                            x[0] = y | z << 32 - k & 0xffff;
                            x[1] = z >> k - 16 & 0xffff;
                            x[2] = z >> k;
                            i = 2;
                     } else {
                            x[0] = y & 0xffff;
                            x[1] = y >> 16 | z << 16 - k & 0xffff;
                            x[2] = z >> k & 0xffff;
                            x[3] = z >> k+16;
                            i = 3;
                     }
              } else {
                     x[0] = y & 0xffff;
                     x[1] = y >> 16;
                     x[2] = z & 0xffff;
                     x[3] = z >> 16;
                     i = 3;
              }
       } else {
#ifdef DEBUG
              if (!z)
                     Bug("Zero passed to d2b");
#endif
              k = lo0bits(&z);
              if (k >= 16) {
                     x[0] = z;
                     i = 0;
              } else {
                     x[0] = z & 0xffff;
                     x[1] = z >> 16;
                     i = 1;
              }
              k += 32;
       }
       while(!x[i])
              --i;
       b->wds = i + 1;
#endif
#ifndef Sudden_Underflow
       if (de) {
#endif
#ifdef IBM
              *e = (de - Bias - (P-1) << 2) + k;
              *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
#else
              *e = de - Bias - (P-1) + k;
              *bits = P - k;
#endif
#ifndef Sudden_Underflow
       } else {
              *e = de - Bias - (P-1) + 1 + k;
#ifdef Pack_32
              *bits = 32*i - hi0bits(x[i-1]);
#else
              *bits = (i+2)*16 - hi0bits(x[i]);
#endif
       }
#endif
       return b;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static void destroy_freelist ( void  ) [static]

Definition at line 1383 of file zend_strtod.c.

{
       int i;
       Bigint *tmp;

       _THREAD_PRIVATE_MUTEX_LOCK(dtoa_mutex);
       for (i = 0; i <= Kmax; i++) {
              Bigint **listp = &freelist[i];
              while ((tmp = *listp) != NULL) {
                     *listp = tmp->next;
                     free(tmp);
              }
              freelist[i] = NULL;
       }
       _THREAD_PRIVATE_MUTEX_UNLOCK(dtoa_mutex);
       
}

Here is the caller graph for this function:

static Bigint* diff ( Bigint a,
Bigint b 
) [static]

Definition at line 917 of file zend_strtod.c.

{
       Bigint *c;
       int i, wa, wb;
       Long borrow, y; /* We need signed shifts here. */
       ULong *xa, *xae, *xb, *xbe, *xc;
#ifdef Pack_32
       Long z;
#endif

       i = cmp(a,b);
       if (!i) {
              c = Balloc(0);
              c->wds = 1;
              c->x[0] = 0;
              return c;
       }
       if (i < 0) {
              c = a;
              a = b;
              b = c;
              i = 1;
       } else {
              i = 0;
       }
       c = Balloc(a->k);
       c->sign = i;
       wa = a->wds;
       xa = a->x;
       xae = xa + wa;
       wb = b->wds;
       xb = b->x;
       xbe = xb + wb;
       xc = c->x;
       borrow = 0;
#ifdef Pack_32
       do {
              y = (*xa & 0xffff) - (*xb & 0xffff) + borrow;
              borrow = y >> 16;
              Sign_Extend(borrow, y);
              z = (*xa++ >> 16) - (*xb++ >> 16) + borrow;
              borrow = z >> 16;
              Sign_Extend(borrow, z);
              Storeinc(xc, z, y);
       } while(xb < xbe);
       while(xa < xae) {
              y = (*xa & 0xffff) + borrow;
              borrow = y >> 16;
              Sign_Extend(borrow, y);
              z = (*xa++ >> 16) + borrow;
              borrow = z >> 16;
              Sign_Extend(borrow, z);
              Storeinc(xc, z, y);
       }
#else
       do {
              y = *xa++ - *xb++ + borrow;
              borrow = y >> 16;
              Sign_Extend(borrow, y);
              *xc++ = y & 0xffff;
       } while(xb < xbe);
       while(xa < xae) {
              y = *xa++ + borrow;
              borrow = y >> 16;
              Sign_Extend(borrow, y);
              *xc++ = y & 0xffff;
       }
#endif
       while(!*--xc) {
              wa--;
       }
       c->wds = wa;
       return c;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static int hi0bits ( ULong  x) [static]

Definition at line 588 of file zend_strtod.c.

{
       int k = 0;

       if (!(x & 0xffff0000)) {
              k = 16;
              x <<= 16;
       }
       if (!(x & 0xff000000)) {
              k += 8;
              x <<= 8;
       }
       if (!(x & 0xf0000000)) {
              k += 4;
              x <<= 4;
       }
       if (!(x & 0xc0000000)) {
              k += 2;
              x <<= 2;
       }
       if (!(x & 0x80000000)) {
              k++;
              if (!(x & 0x40000000)) {
                     return 32;
              }
       }
       return k;
}

Here is the caller graph for this function:

static Bigint* i2b ( int  i) [static]

Definition at line 661 of file zend_strtod.c.

{
       Bigint *b;

       b = Balloc(1);
       b->x[0] = i;
       b->wds = 1;
       return b;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static int lo0bits ( ULong y) [static]

Definition at line 617 of file zend_strtod.c.

{
       int k;
       ULong x = *y;

       if (x & 7) {
              if (x & 1) {
                     return 0;
              }
              if (x & 2) {
                     *y = x >> 1;
                     return 1;
              }
              *y = x >> 2;
              return 2;
       }
       k = 0;
       if (!(x & 0xffff)) {
              k = 16;
              x >>= 16;
       }
       if (!(x & 0xff)) {
              k += 8;
              x >>= 8;
       }
       if (!(x & 0xf)) {
              k += 4;
              x >>= 4;
       }
       if (!(x & 0x3)) {
              k += 2;
              x >>= 2;
       }
       if (!(x & 1)) {
              k++;
              x >>= 1;
              if (!(x & 1)) {
                     return 32;
              }
       }
       *y = x;
       return k;
}

Here is the caller graph for this function:

static Bigint* lshift ( Bigint b,
int  k 
) [static]

Definition at line 830 of file zend_strtod.c.

{
       int i, k1, n, n1;
       Bigint *b1;
       ULong *x, *x1, *xe, z;

#ifdef Pack_32
       n = k >> 5;
#else
       n = k >> 4;
#endif
       k1 = b->k;
       n1 = n + b->wds + 1;
       for(i = b->maxwds; n1 > i; i <<= 1) {
              k1++;
       }
       b1 = Balloc(k1);
       x1 = b1->x;
       for(i = 0; i < n; i++) {
              *x1++ = 0;
       }
       x = b->x;
       xe = x + b->wds;
#ifdef Pack_32
       if (k &= 0x1f) {
              k1 = 32 - k;
              z = 0;
              do {
                     *x1++ = *x << k | z;
                     z = *x++ >> k1;
              }
              while(x < xe);
              if ((*x1 = z)) {
                     ++n1;
              }
       }
#else
       if (k &= 0xf) {
              k1 = 16 - k;
              z = 0;
              do {
                     *x1++ = *x << k  & 0xffff | z;
                     z = *x++ >> k1;
              }
              while(x < xe);
              if (*x1 = z) {
                     ++n1;
              }
       }
#endif
       else do
              *x1++ = *x++;
       while(x < xe);
       b1->wds = n1 - 1;
       Bfree(b);
       return b1;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static Bigint* mult ( Bigint a,
Bigint b 
) [static]

Definition at line 671 of file zend_strtod.c.

{
       Bigint *c;
       int k, wa, wb, wc;
       ULong carry, y, z;
       ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
#ifdef Pack_32
       ULong z2;
#endif

       if (a->wds < b->wds) {
              c = a;
              a = b;
              b = c;
       }
       k = a->k;
       wa = a->wds;
       wb = b->wds;
       wc = wa + wb;
       if (wc > a->maxwds) {
              k++;
       }
       c = Balloc(k);
       for(x = c->x, xa = x + wc; x < xa; x++) {
              *x = 0;
       }
       xa = a->x;
       xae = xa + wa;
       xb = b->x;
       xbe = xb + wb;
       xc0 = c->x;
#ifdef Pack_32
       for(; xb < xbe; xb++, xc0++) {
              if ((y = *xb & 0xffff)) {
                     x = xa;
                     xc = xc0;
                     carry = 0;
                     do {
                            z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
                            carry = z >> 16;
                            z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
                            carry = z2 >> 16;
                            Storeinc(xc, z2, z);
                     }
                     while(x < xae);
                     *xc = carry;
              }
              if ((y = *xb >> 16)) {
                     x = xa;
                     xc = xc0;
                     carry = 0;
                     z2 = *xc;
                     do {
                            z = (*x & 0xffff) * y + (*xc >> 16) + carry;
                            carry = z >> 16;
                            Storeinc(xc, z, z2);
                            z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
                            carry = z2 >> 16;
                     }
                     while(x < xae);
                     *xc = z2;
              }
       }
#else
       for(; xb < xbe; xc0++) {
              if (y = *xb++) {
                     x = xa;
                     xc = xc0;
                     carry = 0;
                     do {
                            z = *x++ * y + *xc + carry;
                            carry = z >> 16;
                            *xc++ = z & 0xffff;
                     }
                     while(x < xae);
                     *xc = carry;
              }
       }
#endif
       for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
       c->wds = wc;
       return c;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static Bigint* multadd ( Bigint b,
int  m,
int  a 
) [static]

Definition at line 549 of file zend_strtod.c.

{
       int i, wds;
       ULong *x, y;
#ifdef Pack_32
       ULong xi, z;
#endif
       Bigint *b1;

       wds = b->wds;
       x = b->x;
       i = 0;
       do {
#ifdef Pack_32
              xi = *x;
              y = (xi & 0xffff) * m + a;
              z = (xi >> 16) * m + (y >> 16);
              a = (int)(z >> 16);
              *x++ = (z << 16) + (y & 0xffff);
#else
              y = *x * m + a;
              a = (int)(y >> 16);
              *x++ = y & 0xffff;
#endif
       }
       while(++i < wds);
       if (a) {
              if (wds >= b->maxwds) {
                     b1 = Balloc(b->k+1);
                     Bcopy(b1, b);
                     Bfree(b);
                     b = b1;
              }
              b->x[wds++] = a;
              b->wds = wds;
       }
       return b;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static char* nrv_alloc ( char *  s,
char **  rve,
int  n 
) [static]

Definition at line 535 of file zend_strtod.c.

{
       char *rv, *t;

       t = rv = rv_alloc(n);
       while((*t = *s++) !=0) {
              t++;
       }
       if (rve) {
              *rve = t;
       }
       return rv;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static Bigint* pow5mult ( Bigint b,
int  k 
) [static]

Definition at line 788 of file zend_strtod.c.

{
       Bigint *b1, *p5, *p51;
       int i;
       static int p05[3] = { 5, 25, 125 };

       _THREAD_PRIVATE_MUTEX_LOCK(pow5mult_mutex);
       if ((i = k & 3)) {
              b = multadd(b, p05[i-1], 0);
       }

       if (!(k >>= 2)) {
              _THREAD_PRIVATE_MUTEX_UNLOCK(pow5mult_mutex);
              return b;
       }
       if (!(p5 = p5s)) {
              /* first time */
              p5 = p5s = i2b(625);
              p5->next = 0;
       }
       for(;;) {
              if (k & 1) {
                     b1 = mult(b, p5);
                     Bfree(b);
                     b = b1;
              }
              if (!(k >>= 1)) {
                     break;
              }
              if (!(p51 = p5->next)) {
                     if (!(p51 = p5->next)) {
                            p51 = p5->next = mult(p5,p5);
                            p51->next = 0;
                     }
              }
              p5 = p51;
       }
       _THREAD_PRIVATE_MUTEX_UNLOCK(pow5mult_mutex);
       return b;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static int quorem ( Bigint b,
Bigint S 
) [static]

Definition at line 1283 of file zend_strtod.c.

{
       int n;
       Long borrow, y;
       ULong carry, q, ys;
       ULong *bx, *bxe, *sx, *sxe;
#ifdef Pack_32
       Long z;
       ULong si, zs;
#endif

       n = S->wds;
#ifdef DEBUG
       /*debug*/ if (b->wds > n)
              /*debug*/   Bug("oversize b in quorem");
#endif
       if (b->wds < n)
              return 0;
       sx = S->x;
       sxe = sx + --n;
       bx = b->x;
       bxe = bx + n;
       q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
#ifdef DEBUG
       /*debug*/ if (q > 9)
              /*debug*/   Bug("oversized quotient in quorem");
#endif
       if (q) {
              borrow = 0;
              carry = 0;
              do {
#ifdef Pack_32
                     si = *sx++;
                     ys = (si & 0xffff) * q + carry;
                     zs = (si >> 16) * q + (ys >> 16);
                     carry = zs >> 16;
                     y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
                     borrow = y >> 16;
                     Sign_Extend(borrow, y);
                     z = (*bx >> 16) - (zs & 0xffff) + borrow;
                     borrow = z >> 16;
                     Sign_Extend(borrow, z);
                     Storeinc(bx, z, y);
#else
                     ys = *sx++ * q + carry;
                     carry = ys >> 16;
                     y = *bx - (ys & 0xffff) + borrow;
                     borrow = y >> 16;
                     Sign_Extend(borrow, y);
                     *bx++ = y & 0xffff;
#endif
              }
              while(sx <= sxe);
              if (!*bxe) {
                     bx = b->x;
                     while(--bxe > bx && !*bxe)
                            --n;
                     b->wds = n;
              }
       }
       if (cmp(b, S) >= 0) {
              q++;
              borrow = 0;
              carry = 0;
              bx = b->x;
              sx = S->x;
              do {
#ifdef Pack_32
                     si = *sx++;
                     ys = (si & 0xffff) + carry;
                     zs = (si >> 16) + (ys >> 16);
                     carry = zs >> 16;
                     y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
                     borrow = y >> 16;
                     Sign_Extend(borrow, y);
                     z = (*bx >> 16) - (zs & 0xffff) + borrow;
                     borrow = z >> 16;
                     Sign_Extend(borrow, z);
                     Storeinc(bx, z, y);
#else
                     ys = *sx++ + carry;
                     carry = ys >> 16;
                     y = *bx - (ys & 0xffff) + borrow;
                     borrow = y >> 16;
                     Sign_Extend(borrow, y);
                     *bx++ = y & 0xffff;
#endif
              }
              while(sx <= sxe);
              bx = b->x;
              bxe = bx + n;
              if (!*bxe) {
                     while(--bxe > bx && !*bxe)
                            --n;
                     b->wds = n;
              }
       }
       return q;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static double ratio ( Bigint a,
Bigint b 
) [static]

Definition at line 1221 of file zend_strtod.c.

{
       volatile _double da, db;
       int k, ka, kb;

       value(da) = b2d(a, &ka);
       value(db) = b2d(b, &kb);
#ifdef Pack_32
       k = ka - kb + 32*(a->wds - b->wds);
#else
       k = ka - kb + 16*(a->wds - b->wds);
#endif
#ifdef IBM
       if (k > 0) {
              word0(da) += (k >> 2)*Exp_msk1;
              if (k &= 3) {
                     da *= 1 << k;
              }
       } else {
              k = -k;
              word0(db) += (k >> 2)*Exp_msk1;
              if (k &= 3)
                     db *= 1 << k;
       }
#else
       if (k > 0) {
              word0(da) += k*Exp_msk1;
       } else {
              k = -k;
              word0(db) += k*Exp_msk1;
       }
#endif
       return value(da) / value(db);
}

Here is the call graph for this function:

Here is the caller graph for this function:

static char* rv_alloc ( int  i) [static]

Definition at line 520 of file zend_strtod.c.

                              {
       int j, k, *r;

       j = sizeof(ULong);
       for(k = 0;
                     sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= i;
                     j <<= 1) {
              k++;
       }
       r = (int*)Balloc(k);
       *r = k;
       return (char *)(r+1);
}

Here is the call graph for this function:

Here is the caller graph for this function:

static Bigint* s2b ( CONST char *  s,
int  nd0,
int  nd,
ULong  y9 
) [static]

Definition at line 755 of file zend_strtod.c.

{
       Bigint *b;
       int i, k;
       Long x, y;

       x = (nd + 8) / 9;
       for(k = 0, y = 1; x > y; y <<= 1, k++) ;
#ifdef Pack_32
       b = Balloc(k);
       b->x[0] = y9;
       b->wds = 1;
#else
       b = Balloc(k+1);
       b->x[0] = y9 & 0xffff;
       b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
#endif

       i = 9;
       if (9 < nd0) {
              s += 9;
              do b = multadd(b, 10, *s++ - '0');
              while(++i < nd0);
              s++;
       } else {
              s += 10;
       }
       for(; i < nd; i++) {
              b = multadd(b, 10, *s++ - '0');
       }
       return b;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static double ulp ( double  _x) [static]

Definition at line 992 of file zend_strtod.c.

{
       volatile _double x;
       register Long L;
       volatile _double a;

       value(x) = _x;
       L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
#ifndef Sudden_Underflow
       if (L > 0) {
#endif
#ifdef IBM
              L |= Exp_msk1 >> 4;
#endif
              word0(a) = L;
              word1(a) = 0;
#ifndef Sudden_Underflow
       }
       else {
              L = -L >> Exp_shift;
              if (L < Exp_shift) {
                     word0(a) = 0x80000 >> L;
                     word1(a) = 0;
              }
              else {
                     word0(a) = 0;
                     L -= Exp_shift;
                     word1(a) = L >= 31 ? 1 : 1 << (31 - L);
              }
       }
#endif
       return value(a);
}

Here is the caller graph for this function:

ZEND_API char* zend_dtoa ( double  _d,
int  mode,
int  ndigits,
int decpt,
int sign,
char **  rve 
)

Definition at line 1443 of file zend_strtod.c.

{
 /* Arguments ndigits, decpt, sign are similar to those
    of ecvt and fcvt; trailing zeros are suppressed from
    the returned string.  If not null, *rve is set to point
    to the end of the return value.  If d is +-Infinity or NaN,
    then *decpt is set to 9999.

    mode:
        0 ==> shortest string that yields d when read in
            and rounded to nearest.
        1 ==> like 0, but with Steele & White stopping rule;
            e.g. with IEEE P754 arithmetic , mode 0 gives
            1e23 whereas mode 1 gives 9.999999999999999e22.
        2 ==> max(1,ndigits) significant digits.  This gives a
            return value similar to that of ecvt, except
            that trailing zeros are suppressed.
        3 ==> through ndigits past the decimal point.  This
            gives a return value similar to that from fcvt,
            except that trailing zeros are suppressed, and
            ndigits can be negative.
        4-9 should give the same return values as 2-3, i.e.,
            4 <= mode <= 9 ==> same return as mode
            2 + (mode & 1).  These modes are mainly for
            debugging; often they run slower but sometimes
            faster than modes 2-3.
        4,5,8,9 ==> left-to-right digit generation.
        6-9 ==> don't try fast floating-point estimate
            (if applicable).

        Values of mode other than 0-9 are treated as mode 0.

        Sufficient space is allocated to the return value
        to hold the suppressed trailing zeros.
    */

       int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1,
              j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
              spec_case = 0, try_quick;
       Long L;
#ifndef Sudden_Underflow
       int denorm;
       ULong x;
#endif
       Bigint *b, *b1, *delta, *mlo, *mhi, *S, *tmp;
       double ds;
       char *s, *s0;
       volatile _double d, d2, eps;

       value(d) = _d;

       if (word0(d) & Sign_bit) {
              /* set sign for everything, including 0's and NaNs */
              *sign = 1;
              word0(d) &= ~Sign_bit;  /* clear sign bit */
       }
       else
              *sign = 0;

#if defined(IEEE_Arith) + defined(VAX)
#ifdef IEEE_Arith
       if ((word0(d) & Exp_mask) == Exp_mask)
#else
              if (word0(d)  == 0x8000)
#endif
              {
                     /* Infinity or NaN */
                     *decpt = 9999;
#ifdef IEEE_Arith
                     if (!word1(d) && !(word0(d) & 0xfffff))
                            return nrv_alloc("Infinity", rve, 8);
#endif
                     return nrv_alloc("NaN", rve, 3);
              }
#endif
#ifdef IBM
       value(d) += 0; /* normalize */
#endif
       if (!value(d)) {
              *decpt = 1;
              return nrv_alloc("0", rve, 1);
       }

       b = d2b(value(d), &be, &bbits);
#ifdef Sudden_Underflow
       i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
#else
       if ((i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
#endif
              value(d2) = value(d);
              word0(d2) &= Frac_mask1;
              word0(d2) |= Exp_11;
#ifdef IBM
              if (j = 11 - hi0bits(word0(d2) & Frac_mask))
                     value(d2) /= 1 << j;
#endif

              /* log(x)   ~=~ log(1.5) + (x-1.5)/1.5
               * log10(x)  =  log(x) / log(10)
               *      ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
               * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
               *
               * This suggests computing an approximation k to log10(d) by
               *
               * k = (i - Bias)*0.301029995663981
               *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
               *
               * We want k to be too large rather than too small.
               * The error in the first-order Taylor series approximation
               * is in our favor, so we just round up the constant enough
               * to compensate for any error in the multiplication of
               * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
               * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
               * adding 1e-13 to the constant term more than suffices.
               * Hence we adjust the constant term to 0.1760912590558.
               * (We could get a more accurate k by invoking log10,
               *  but this is probably not worthwhile.)
               */

              i -= Bias;
#ifdef IBM
              i <<= 2;
              i += j;
#endif
#ifndef Sudden_Underflow
              denorm = 0;
       }
       else {
              /* d is denormalized */

              i = bbits + be + (Bias + (P-1) - 1);
              x = i > 32  ? (word0(d) << (64 - i)) | (word1(d) >> (i - 32))
                     : (word1(d) << (32 - i));
              value(d2) = x;
              word0(d2) -= 31*Exp_msk1; /* adjust exponent */
              i -= (Bias + (P-1) - 1) + 1;
              denorm = 1;
       }
#endif
       ds = (value(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
       k = (int)ds;
       if (ds < 0. && ds != k)
              k--;    /* want k = floor(ds) */
       k_check = 1;
       if (k >= 0 && k <= Ten_pmax) {
              if (value(d) < tens[k])
                     k--;
              k_check = 0;
       }
       j = bbits - i - 1;
       if (j >= 0) {
              b2 = 0;
              s2 = j;
       }
       else {
              b2 = -j;
              s2 = 0;
       }
       if (k >= 0) {
              b5 = 0;
              s5 = k;
              s2 += k;
       }
       else {
              b2 -= k;
              b5 = -k;
              s5 = 0;
       }
       if (mode < 0 || mode > 9)
              mode = 0;
       try_quick = 1;
       if (mode > 5) {
              mode -= 4;
              try_quick = 0;
       }
       leftright = 1;
       switch(mode) {
              case 0:
              case 1:
                     ilim = ilim1 = -1;
                     i = 18;
                     ndigits = 0;
                     break;
              case 2:
                     leftright = 0;
                     /* no break */
              case 4:
                     if (ndigits <= 0)
                            ndigits = 1;
                     ilim = ilim1 = i = ndigits;
                     break;
              case 3:
                     leftright = 0;
                     /* no break */
              case 5:
                     i = ndigits + k + 1;
                     ilim = i;
                     ilim1 = i - 1;
                     if (i <= 0)
                            i = 1;
       }
       s = s0 = rv_alloc(i);

       if (ilim >= 0 && ilim <= Quick_max && try_quick) {

              /* Try to get by with floating-point arithmetic. */

              i = 0;
              value(d2) = value(d);
              k0 = k;
              ilim0 = ilim;
              ieps = 2; /* conservative */
              if (k > 0) {
                     ds = tens[k&0xf];
                     j = k >> 4;
                     if (j & Bletch) {
                            /* prevent overflows */
                            j &= Bletch - 1;
                            value(d) /= bigtens[n_bigtens-1];
                            ieps++;
                     }
                     for(; j; j >>= 1, i++)
                            if (j & 1) {
                                   ieps++;
                                   ds *= bigtens[i];
                            }
                     value(d) /= ds;
              }
              else if ((j1 = -k)) {
                     value(d) *= tens[j1 & 0xf];
                     for(j = j1 >> 4; j; j >>= 1, i++)
                            if (j & 1) {
                                   ieps++;
                                   value(d) *= bigtens[i];
                            }
              }
              if (k_check && value(d) < 1. && ilim > 0) {
                     if (ilim1 <= 0)
                            goto fast_failed;
                     ilim = ilim1;
                     k--;
                     value(d) *= 10.;
                     ieps++;
              }
              value(eps) = ieps*value(d) + 7.;
              word0(eps) -= (P-1)*Exp_msk1;
              if (ilim == 0) {
                     S = mhi = 0;
                     value(d) -= 5.;
                     if (value(d) > value(eps))
                            goto one_digit;
                     if (value(d) < -value(eps))
                            goto no_digits;
                     goto fast_failed;
              }
#ifndef No_leftright
              if (leftright) {
                     /* Use Steele & White method of only
                      * generating digits needed.
                      */
                     value(eps) = 0.5/tens[ilim-1] - value(eps);
                     for(i = 0;;) {
                            L = value(d);
                            value(d) -= L;
                            *s++ = '0' + (int)L;
                            if (value(d) < value(eps))
                                   goto ret1;
                            if (1. - value(d) < value(eps))
                                   goto bump_up;
                            if (++i >= ilim)
                                   break;
                            value(eps) *= 10.;
                            value(d) *= 10.;
                     }
              }
              else {
#endif
                     /* Generate ilim digits, then fix them up. */
                     value(eps) *= tens[ilim-1];
                     for(i = 1;; i++, value(d) *= 10.) {
                            L = value(d);
                            value(d) -= L;
                            *s++ = '0' + (int)L;
                            if (i == ilim) {
                                   if (value(d) > 0.5 + value(eps))
                                          goto bump_up;
                                   else if (value(d) < 0.5 - value(eps)) {
                                          while(*--s == '0');
                                          s++;
                                          goto ret1;
                                   }
                                   break;
                            }
                     }
#ifndef No_leftright
              }
#endif
fast_failed:
              s = s0;
              value(d) = value(d2);
              k = k0;
              ilim = ilim0;
       }

       /* Do we have a "small" integer? */

       if (be >= 0 && k <= Int_max) {
              /* Yes. */
              ds = tens[k];
              if (ndigits < 0 && ilim <= 0) {
                     S = mhi = 0;
                     if (ilim < 0 || value(d) <= 5*ds)
                            goto no_digits;
                     goto one_digit;
              }
              for(i = 1;; i++) {
                     L = value(d) / ds;
                     value(d) -= L*ds;
#ifdef Check_FLT_ROUNDS
                     /* If FLT_ROUNDS == 2, L will usually be high by 1 */
                     if (value(d) < 0) {
                            L--;
                            value(d) += ds;
                     }
#endif
                     *s++ = '0' + (int)L;
                     if (i == ilim) {
                            value(d) += value(d);
                            if (value(d) > ds || (value(d) == ds && (L & 1))) {
bump_up:
                                   while(*--s == '9')
                                          if (s == s0) {
                                                 k++;
                                                 *s = '0';
                                                 break;
                                          }
                                   ++*s++;
                            }
                            break;
                     }
                     if (!(value(d) *= 10.))
                            break;
              }
              goto ret1;
       }

       m2 = b2;
       m5 = b5;
       mhi = mlo = 0;
       if (leftright) {
              if (mode < 2) {
                     i =
#ifndef Sudden_Underflow
                            denorm ? be + (Bias + (P-1) - 1 + 1) :
#endif
#ifdef IBM
                            1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
#else
                     1 + P - bbits;
#endif
              }
              else {
                     j = ilim - 1;
                     if (m5 >= j)
                            m5 -= j;
                     else {
                            s5 += j -= m5;
                            b5 += j;
                            m5 = 0;
                     }
                     if ((i = ilim) < 0) {
                            m2 -= i;
                            i = 0;
                     }
              }
              b2 += i;
              s2 += i;
              mhi = i2b(1);
       }
       if (m2 > 0 && s2 > 0) {
              i = m2 < s2 ? m2 : s2;
              b2 -= i;
              m2 -= i;
              s2 -= i;
       }
       if (b5 > 0) {
              if (leftright) {
                     if (m5 > 0) {
                            mhi = pow5mult(mhi, m5);
                            b1 = mult(mhi, b);
                            Bfree(b);
                            b = b1;
                     }
                     if ((j = b5 - m5)) {
                            b = pow5mult(b, j);
                     }
              } else {
                     b = pow5mult(b, b5);
              }
       }
       S = i2b(1);
       if (s5 > 0)
              S = pow5mult(S, s5);
       /* Check for special case that d is a normalized power of 2. */

       if (mode < 2) {
              if (!word1(d) && !(word0(d) & Bndry_mask)
#ifndef Sudden_Underflow
                            && word0(d) & Exp_mask
#endif
                 ) {
                     /* The special case */
                     b2 += Log2P;
                     s2 += Log2P;
                     spec_case = 1;
              } else {
                     spec_case = 0;
              }
       }

       /* Arrange for convenient computation of quotients:
        * shift left if necessary so divisor has 4 leading 0 bits.
        *
        * Perhaps we should just compute leading 28 bits of S once
        * and for all and pass them and a shift to quorem, so it
        * can do shifts and ors to compute the numerator for q.
        */
#ifdef Pack_32
       if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f))
              i = 32 - i;
#else
       if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf))
              i = 16 - i;
#endif
       if (i > 4) {
              i -= 4;
              b2 += i;
              m2 += i;
              s2 += i;
       }
       else if (i < 4) {
              i += 28;
              b2 += i;
              m2 += i;
              s2 += i;
       }
       if (b2 > 0)
              b = lshift(b, b2);
       if (s2 > 0)
              S = lshift(S, s2);
       if (k_check) {
              if (cmp(b,S) < 0) {
                     k--;
                     b = multadd(b, 10, 0);  /* we botched the k estimate */
                     if (leftright)
                            mhi = multadd(mhi, 10, 0);
                     ilim = ilim1;
              }
       }
       if (ilim <= 0 && mode > 2) {
              if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
                     /* no digits, fcvt style */
no_digits:
                     k = -1 - ndigits;
                     goto ret;
              }
one_digit:
              *s++ = '1';
              k++;
              goto ret;
       }
       if (leftright) {
              if (m2 > 0)
                     mhi = lshift(mhi, m2);

              /* Compute mlo -- check for special case
               * that d is a normalized power of 2.
               */

              mlo = mhi;
              if (spec_case) {
                     mhi = Balloc(mhi->k);
                     Bcopy(mhi, mlo);
                     mhi = lshift(mhi, Log2P);
              }

              for(i = 1;;i++) {
                     dig = quorem(b,S) + '0';
                     /* Do we yet have the shortest decimal string
                      * that will round to d?
                      */
                     j = cmp(b, mlo);
                     delta = diff(S, mhi);
                     j1 = delta->sign ? 1 : cmp(b, delta);
                     Bfree(delta);
#ifndef ROUND_BIASED
                     if (j1 == 0 && !mode && !(word1(d) & 1)) {
                            if (dig == '9')
                                   goto round_9_up;
                            if (j > 0)
                                   dig++;
                            *s++ = dig;
                            goto ret;
                     }
#endif
                     if (j < 0 || (j == 0 && !mode
#ifndef ROUND_BIASED
                                          && !(word1(d) & 1)
#endif
                                          )) {
                            if (j1 > 0) {
                                   b = lshift(b, 1);
                                   j1 = cmp(b, S);
                                   if ((j1 > 0 || (j1 == 0 && (dig & 1)))
                                                 && dig++ == '9')
                                          goto round_9_up;
                            }
                            *s++ = dig;
                            goto ret;
                     }
                     if (j1 > 0) {
                            if (dig == '9') { /* possible if i == 1 */
round_9_up:
                                   *s++ = '9';
                                   goto roundoff;
                            }
                            *s++ = dig + 1;
                            goto ret;
                     }
                     *s++ = dig;
                     if (i == ilim)
                            break;
                     b = multadd(b, 10, 0);
                     if (mlo == mhi)
                            mlo = mhi = multadd(mhi, 10, 0);
                     else {
                            mlo = multadd(mlo, 10, 0);
                            mhi = multadd(mhi, 10, 0);
                     }
              }
       }
       else
              for(i = 1;; i++) {
                     *s++ = dig = quorem(b,S) + '0';
                     if (i >= ilim)
                            break;
                     b = multadd(b, 10, 0);
              }

       /* Round off last digit */

       b = lshift(b, 1);
       j = cmp(b, S);
       if (j > 0 || (j == 0 && (dig & 1))) {
roundoff:
              while(*--s == '9')
                     if (s == s0) {
                            k++;
                            *s++ = '1';
                            goto ret;
                     }
              ++*s++;
       }
       else {
              while(*--s == '0');
              s++;
       }
ret:
       Bfree(S);
       if (mhi) {
              if (mlo && mlo != mhi)
                     Bfree(mlo);
              Bfree(mhi);
       }
ret1:

       _THREAD_PRIVATE_MUTEX_LOCK(pow5mult_mutex);
       while (p5s) {
              tmp = p5s;
              p5s = p5s->next;
              free(tmp);
       }
       _THREAD_PRIVATE_MUTEX_UNLOCK(pow5mult_mutex);

       Bfree(b);

       if (s == s0) {              /* don't return empty string */
              *s++ = '0';
              k = 0;
       }
       *s = 0;
       *decpt = k + 1;
       if (rve)
              *rve = s;
       return s0;
}

Here is the call graph for this function:

Here is the caller graph for this function:

ZEND_API void zend_freedtoa ( char *  s)

Definition at line 1402 of file zend_strtod.c.

{
       Bigint *b = (Bigint *)((int *)s - 1);
       b->maxwds = 1 << (b->k = *(int*)b);
       Bfree(b);
}

Here is the call graph for this function:

Here is the caller graph for this function:

ZEND_API double zend_hex_strtod ( const char *  str,
char **  endptr 
)

Definition at line 2591 of file zend_strtod.c.

{
       const char *s = str;
       char c;
       int any = 0;
       double value = 0;

       if (*s == '0' && (s[1] == 'x' || s[1] == 'X')) {
              s += 2;
       }

       while ((c = *s++)) {
              if (c >= '0' && c <= '9') {
                     c -= '0';
              } else if (c >= 'A' && c <= 'F') {
                     c -= 'A' - 10;
              } else if (c >= 'a' && c <= 'f') {
                     c -= 'a' - 10;
              } else {
                     break;
              }

              any = 1;
              value = value * 16 + c;
       }

       if (endptr != NULL) {
              *endptr = (char *)(any ? s - 1 : str);
       }

       return value;
}

Here is the caller graph for this function:

ZEND_API double zend_oct_strtod ( const char *  str,
char **  endptr 
)

Definition at line 2624 of file zend_strtod.c.

{
       const char *s = str;
       char c;
       double value = 0;
       int any = 0;

       /* skip leading zero */
       s++;

       while ((c = *s++)) {
              if (c < '0' || c > '7') {
                     /* break and return the current value if the number is not well-formed
                      * that's what Linux strtol() does 
                      */
                     break;
              }
              value = value * 8 + c - '0';
              any = 1;
       }

       if (endptr != NULL) {
              *endptr = (char *)(any ? s - 1 : str);
       }

       return value;
}

Here is the caller graph for this function:

Definition at line 463 of file zend_strtod.c.

{
       destroy_freelist();
#ifdef ZTS
       tsrm_mutex_free(dtoa_mutex);
       dtoa_mutex = NULL;

       tsrm_mutex_free(pow5mult_mutex);
       pow5mult_mutex = NULL;
#endif
       return 1;
}

Here is the call graph for this function:

Here is the caller graph for this function:

Definition at line 454 of file zend_strtod.c.

{
#ifdef ZTS
       dtoa_mutex = tsrm_mutex_alloc();
       pow5mult_mutex = tsrm_mutex_alloc();
#endif
       return 1;
}

Here is the caller graph for this function:

ZEND_API double zend_strtod ( CONST char *  s00,
char **  se 
)

Definition at line 2044 of file zend_strtod.c.

{
       int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
              e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
       CONST char *s, *s0, *s1;
       volatile double aadj, aadj1, adj;
       volatile _double rv, rv0;
       Long L;
       ULong y, z;
       Bigint *bb, *bb1, *bd, *bd0, *bs, *delta, *tmp;
       double result;

       CONST char decimal_point = '.';

       sign = nz0 = nz = 0;
       value(rv) = 0.;


       for(s = s00; isspace((unsigned char) *s); s++)
              ;

       if (*s == '-') {
              sign = 1;
              s++;
       } else if (*s == '+') {
              s++;
       }

       if (*s == '\0') {
              s = s00;
              goto ret;
       }

       if (*s == '0') {
              nz0 = 1;
              while(*++s == '0') ;
              if (!*s)
                     goto ret;
       }
       s0 = s;
       y = z = 0;
       for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
              if (nd < 9)
                     y = 10*y + c - '0';
              else if (nd < 16)
                     z = 10*z + c - '0';
       nd0 = nd;
       if (c == decimal_point) {
              c = *++s;
              if (!nd) {
                     for(; c == '0'; c = *++s)
                            nz++;
                     if (c > '0' && c <= '9') {
                            s0 = s;
                            nf += nz;
                            nz = 0;
                            goto have_dig;
                     }
                     goto dig_done;
              }
              for(; c >= '0' && c <= '9'; c = *++s) {
have_dig:
                     nz++;
                     if (c -= '0') {
                            nf += nz;
                            for(i = 1; i < nz; i++)
                                   if (nd++ < 9)
                                          y *= 10;
                                   else if (nd <= DBL_DIG + 1)
                                          z *= 10;
                            if (nd++ < 9)
                                   y = 10*y + c;
                            else if (nd <= DBL_DIG + 1)
                                   z = 10*z + c;
                            nz = 0;
                     }
              }
       }
dig_done:
       e = 0;
       if (c == 'e' || c == 'E') {
              if (!nd && !nz && !nz0) {
                     s = s00;
                     goto ret;
              }
              s00 = s;
              esign = 0;
              switch(c = *++s) {
                     case '-':
                            esign = 1;
                     case '+':
                            c = *++s;
              }
              if (c >= '0' && c <= '9') {
                     while(c == '0')
                            c = *++s;
                     if (c > '0' && c <= '9') {
                            L = c - '0';
                            s1 = s;
                            while((c = *++s) >= '0' && c <= '9')
                                   L = 10*L + c - '0';
                            if (s - s1 > 8 || L > 19999)
                                   /* Avoid confusion from exponents
                                    * so large that e might overflow.
                                    */
                                   e = 19999; /* safe for 16 bit ints */
                            else
                                   e = (int)L;
                            if (esign)
                                   e = -e;
                     }
                     else
                            e = 0;
              }
              else
                     s = s00;
       }
       if (!nd) {
              if (!nz && !nz0)
                     s = s00;
              goto ret;
       }
       e1 = e -= nf;

       /* Now we have nd0 digits, starting at s0, followed by a
        * decimal point, followed by nd-nd0 digits.  The number we're
        * after is the integer represented by those digits times
        * 10**e */

       if (!nd0)
              nd0 = nd;
       k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
       value(rv) = y;
       if (k > 9)
              value(rv) = tens[k - 9] * value(rv) + z;
       bd0 = 0;
       if (nd <= DBL_DIG
#ifndef RND_PRODQUOT
                     && FLT_ROUNDS == 1
#endif
          ) {
              if (!e)
                     goto ret;
              if (e > 0) {
                     if (e <= Ten_pmax) {
#ifdef VAX
                            goto vax_ovfl_check;
#else
                            /* value(rv) = */ rounded_product(value(rv),
                                          tens[e]);
                            goto ret;
#endif
                     }
                     i = DBL_DIG - nd;
                     if (e <= Ten_pmax + i) {
                            /* A fancier test would sometimes let us do
                             * this for larger i values.
                             */
                            e -= i;
                            value(rv) *= tens[i];
#ifdef VAX
                            /* VAX exponent range is so narrow we must
                             * worry about overflow here...
                             */
vax_ovfl_check:
                            word0(rv) -= P*Exp_msk1;
                            /* value(rv) = */ rounded_product(value(rv),
                                          tens[e]);
                            if ((word0(rv) & Exp_mask)
                                          > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
                                   goto ovfl;
                            word0(rv) += P*Exp_msk1;
#else
                            /* value(rv) = */ rounded_product(value(rv),
                                          tens[e]);
#endif
                            goto ret;
                     }
              }
#ifndef Inaccurate_Divide
              else if (e >= -Ten_pmax) {
                     /* value(rv) = */ rounded_quotient(value(rv),
                                   tens[-e]);
                     goto ret;
              }
#endif
       }
       e1 += nd - k;

       /* Get starting approximation = rv * 10**e1 */

       if (e1 > 0) {
              if ((i = e1 & 15))
                     value(rv) *= tens[i];
              if (e1 &= ~15) {
                     if (e1 > DBL_MAX_10_EXP) {
ovfl:
                            errno = ERANGE;
#ifndef Bad_float_h
                            value(rv) = HUGE_VAL;
#else
                            /* Can't trust HUGE_VAL */
#ifdef IEEE_Arith
                            word0(rv) = Exp_mask;
                            word1(rv) = 0;
#else
                            word0(rv) = Big0;
                            word1(rv) = Big1;
#endif
#endif
                            if (bd0)
                                   goto retfree;
                            goto ret;
                     }
                     if (e1 >>= 4) {
                            for(j = 0; e1 > 1; j++, e1 >>= 1)
                                   if (e1 & 1)
                                          value(rv) *= bigtens[j];
                            /* The last multiplication could overflow. */
                            word0(rv) -= P*Exp_msk1;
                            value(rv) *= bigtens[j];
                            if ((z = word0(rv) & Exp_mask)
                                          > Exp_msk1*(DBL_MAX_EXP+Bias-P))
                                   goto ovfl;
                            if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
                                   /* set to largest number */
                                   /* (Can't trust DBL_MAX) */
                                   word0(rv) = Big0;
                                   word1(rv) = Big1;
                            }
                            else
                                   word0(rv) += P*Exp_msk1;
                     }

              }
       }
       else if (e1 < 0) {
              e1 = -e1;
              if ((i = e1 & 15))
                     value(rv) /= tens[i];
              if (e1 &= ~15) {
                     e1 >>= 4;
                     if (e1 >= 1 << n_bigtens)
                            goto undfl;
                     for(j = 0; e1 > 1; j++, e1 >>= 1)
                            if (e1 & 1)
                                   value(rv) *= tinytens[j];
                     /* The last multiplication could underflow. */
                     value(rv0) = value(rv);
                     value(rv) *= tinytens[j];
                     if (!value(rv)) {
                            value(rv) = 2.*value(rv0);
                            value(rv) *= tinytens[j];
                            if (!value(rv)) {
undfl:
                                   value(rv) = 0.;
                                   errno = ERANGE;
                                   if (bd0)
                                          goto retfree;
                                   goto ret;
                            }
                            word0(rv) = Tiny0;
                            word1(rv) = Tiny1;
                            /* The refinement below will clean
                             * this approximation up.
                             */
                     }
              }
       }

       /* Now the hard part -- adjusting rv to the correct value.*/

       /* Put digits into bd: true value = bd * 10^e */

       bd0 = s2b(s0, nd0, nd, y);

       for(;;) {
              bd = Balloc(bd0->k);
              Bcopy(bd, bd0);
              bb = d2b(value(rv), &bbe, &bbbits);       /* rv = bb * 2^bbe */
              bs = i2b(1);

              if (e >= 0) {
                     bb2 = bb5 = 0;
                     bd2 = bd5 = e;
              }
              else {
                     bb2 = bb5 = -e;
                     bd2 = bd5 = 0;
              }
              if (bbe >= 0)
                     bb2 += bbe;
              else
                     bd2 -= bbe;
              bs2 = bb2;
#ifdef Sudden_Underflow
#ifdef IBM
              j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
#else
              j = P + 1 - bbbits;
#endif
#else
              i = bbe + bbbits - 1;       /* logb(rv) */
              if (i < Emin) /* denormal */
                     j = bbe + (P-Emin);
              else
                     j = P + 1 - bbbits;
#endif
              bb2 += j;
              bd2 += j;
              i = bb2 < bd2 ? bb2 : bd2;
              if (i > bs2)
                     i = bs2;
              if (i > 0) {
                     bb2 -= i;
                     bd2 -= i;
                     bs2 -= i;
              }
              if (bb5 > 0) {
                     bs = pow5mult(bs, bb5);
                     bb1 = mult(bs, bb);
                     Bfree(bb);
                     bb = bb1;
              }
              if (bb2 > 0)
                     bb = lshift(bb, bb2);
              if (bd5 > 0)
                     bd = pow5mult(bd, bd5);
              if (bd2 > 0)
                     bd = lshift(bd, bd2);
              if (bs2 > 0)
                     bs = lshift(bs, bs2);
              delta = diff(bb, bd);
              dsign = delta->sign;
              delta->sign = 0;
              i = cmp(delta, bs);
              if (i < 0) {
                     /* Error is less than half an ulp -- check for
                      * special case of mantissa a power of two.
                      */
                     if (dsign || word1(rv) || word0(rv) & Bndry_mask)
                            break;
                     delta = lshift(delta,Log2P);
                     if (cmp(delta, bs) > 0)
                            goto drop_down;
                     break;
              }
              if (i == 0) {
                     /* exactly half-way between */
                     if (dsign) {
                            if ((word0(rv) & Bndry_mask1) == Bndry_mask1
                                          &&  word1(rv) == 0xffffffff) {
                                   /*boundary case -- increment exponent*/
                                   word0(rv) = (word0(rv) & Exp_mask)
                                          + Exp_msk1
#ifdef IBM
                                          | Exp_msk1 >> 4
#endif
                                          ;
                                   word1(rv) = 0;
                                   break;
                            }
                     }
                     else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
drop_down:
                            /* boundary case -- decrement exponent */
#ifdef Sudden_Underflow
                            L = word0(rv) & Exp_mask;
#ifdef IBM
                            if (L <  Exp_msk1)
#else
                                   if (L <= Exp_msk1)
#endif
                                          goto undfl;
                            L -= Exp_msk1;
#else
                            L = (word0(rv) & Exp_mask) - Exp_msk1;
#endif
                            word0(rv) = L | Bndry_mask1;
                            word1(rv) = 0xffffffff;
#ifdef IBM
                            goto cont;
#else
                            break;
#endif
                     }
#ifndef ROUND_BIASED
                     if (!(word1(rv) & LSB))
                            break;
#endif
                     if (dsign)
                            value(rv) += ulp(value(rv));
#ifndef ROUND_BIASED
                     else {
                            value(rv) -= ulp(value(rv));
#ifndef Sudden_Underflow
                            if (!value(rv))
                                   goto undfl;
#endif
                     }
#endif
                     break;
              }
              if ((aadj = ratio(delta, bs)) <= 2.) {
                     if (dsign)
                            aadj = aadj1 = 1.;
                     else if (word1(rv) || word0(rv) & Bndry_mask) {
#ifndef Sudden_Underflow
                            if (word1(rv) == Tiny1 && !word0(rv))
                                   goto undfl;
#endif
                            aadj = 1.;
                            aadj1 = -1.;
                     }
                     else {
                            /* special case -- power of FLT_RADIX to be */
                            /* rounded down... */

                            if (aadj < 2./FLT_RADIX)
                                   aadj = 1./FLT_RADIX;
                            else
                                   aadj *= 0.5;
                            aadj1 = -aadj;
                     }
              }
              else {
                     aadj *= 0.5;
                     aadj1 = dsign ? aadj : -aadj;
#ifdef Check_FLT_ROUNDS
                     switch(FLT_ROUNDS) {
                            case 2: /* towards +infinity */
                                   aadj1 -= 0.5;
                                   break;
                            case 0: /* towards 0 */
                            case 3: /* towards -infinity */
                                   aadj1 += 0.5;
                     }
#else
                     if (FLT_ROUNDS == 0)
                            aadj1 += 0.5;
#endif
              }
              y = word0(rv) & Exp_mask;

              /* Check for overflow */

              if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
                     value(rv0) = value(rv);
                     word0(rv) -= P*Exp_msk1;
                     adj = aadj1 * ulp(value(rv));
                     value(rv) += adj;
                     if ((word0(rv) & Exp_mask) >=
                                   Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
                            if (word0(rv0) == Big0 && word1(rv0) == Big1)
                                   goto ovfl;
                            word0(rv) = Big0;
                            word1(rv) = Big1;
                            goto cont;
                     }
                     else
                            word0(rv) += P*Exp_msk1;
              }
              else {
#ifdef Sudden_Underflow
                     if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
                            value(rv0) = value(rv);
                            word0(rv) += P*Exp_msk1;
                            adj = aadj1 * ulp(value(rv));
                            value(rv) += adj;
#ifdef IBM
                            if ((word0(rv) & Exp_mask) <  P*Exp_msk1)
#else
                                   if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
#endif
                                   {
                                          if (word0(rv0) == Tiny0
                                                        && word1(rv0) == Tiny1)
                                                 goto undfl;
                                          word0(rv) = Tiny0;
                                          word1(rv) = Tiny1;
                                          goto cont;
                                   }
                                   else
                                          word0(rv) -= P*Exp_msk1;
                     }
                     else {
                            adj = aadj1 * ulp(value(rv));
                            value(rv) += adj;
                     }
#else
                     /* Compute adj so that the IEEE rounding rules will
                      * correctly round rv + adj in some half-way cases.
                      * If rv * ulp(rv) is denormalized (i.e.,
                      * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
                      * trouble from bits lost to denormalization;
                      * example: 1.2e-307 .
                      */
                     if (y <= (P-1)*Exp_msk1 && aadj >= 1.) {
                            aadj1 = (double)(int)(aadj + 0.5);
                            if (!dsign)
                                   aadj1 = -aadj1;
                     }
                     adj = aadj1 * ulp(value(rv));
                     value(rv) += adj;
#endif
              }
              z = word0(rv) & Exp_mask;
              if (y == z) {
                     /* Can we stop now? */
                     L = aadj;
                     aadj -= L;
                     /* The tolerances below are conservative. */
                     if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
                            if (aadj < .4999999 || aadj > .5000001)
                                   break;
                     }
                     else if (aadj < .4999999/FLT_RADIX)
                            break;
              }
cont:
              Bfree(bb);
              Bfree(bd);
              Bfree(bs);
              Bfree(delta);
       }
retfree:
       Bfree(bb);
       Bfree(bd);
       Bfree(bs);
       Bfree(bd0);
       Bfree(delta);
ret:
       if (se)
              *se = (char *)s;
       result = sign ? -value(rv) : value(rv);

       _THREAD_PRIVATE_MUTEX_LOCK(pow5mult_mutex);
       while (p5s) {
              tmp = p5s;
              p5s = p5s->next;
              free(tmp);
       }
       _THREAD_PRIVATE_MUTEX_UNLOCK(pow5mult_mutex);

       return result;
}

Here is the call graph for this function:

Here is the caller graph for this function:


Variable Documentation

CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 } [static]

Definition at line 1267 of file zend_strtod.c.

Bigint* freelist[Kmax+1] [static]

Definition at line 428 of file zend_strtod.c.

Bigint* p5s [static]

Definition at line 429 of file zend_strtod.c.

CONST double tens[] [static]
Initial value:
 {
       1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
       1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
       1e20, 1e21, 1e22



}

Definition at line 1257 of file zend_strtod.c.

CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 } [static]

Definition at line 1268 of file zend_strtod.c.