Back to index

openldap  2.4.31
Defines | Typedefs | Functions | Variables
sha2.c File Reference
#include <string.h>
#include <assert.h>
#include "sha2.h"

Go to the source code of this file.

Defines

#define SHA256_SHORT_BLOCK_LENGTH   (SHA256_BLOCK_LENGTH - 8)
#define SHA384_SHORT_BLOCK_LENGTH   (SHA384_BLOCK_LENGTH - 16)
#define SHA512_SHORT_BLOCK_LENGTH   (SHA512_BLOCK_LENGTH - 16)
#define REVERSE32(w, x)
#define REVERSE64(w, x)
#define ADDINC128(w, n)
#define SHA2_USE_MEMSET_MEMCPY   1
#define MEMSET_BZERO(p, l)   memset((p), 0, (l))
#define MEMCPY_BCOPY(d, s, l)   memcpy((d), (s), (l))
#define R(b, x)   ((x) >> (b))
#define S32(b, x)   (((x) >> (b)) | ((x) << (32 - (b))))
#define S64(b, x)   (((x) >> (b)) | ((x) << (64 - (b))))
#define Ch(x, y, z)   (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x, y, z)   (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define Sigma0_256(x)   (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
#define Sigma1_256(x)   (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
#define sigma0_256(x)   (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
#define sigma1_256(x)   (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
#define Sigma0_512(x)   (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
#define Sigma1_512(x)   (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
#define sigma0_512(x)   (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
#define sigma1_512(x)   (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))

Typedefs

typedef u_int8_t sha2_byte
typedef u_int32_t sha2_word32
typedef u_int64_t sha2_word64

Functions

void SHA512_Last (SHA512_CTX *)
void SHA256_Transform (SHA256_CTX *, const sha2_word32 *)
void SHA512_Transform (SHA512_CTX *, const sha2_word64 *)
void SHA256_Init (SHA256_CTX *context)
void SHA256_Update (SHA256_CTX *context, const sha2_byte *data, size_t len)
void SHA256_Final (sha2_byte digest[], SHA256_CTX *context)
char * SHA256_End (SHA256_CTX *context, char buffer[])
char * SHA256_Data (const sha2_byte *data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH])
void SHA512_Init (SHA512_CTX *context)
void SHA512_Update (SHA512_CTX *context, const sha2_byte *data, size_t len)
void SHA512_Final (sha2_byte digest[], SHA512_CTX *context)
char * SHA512_End (SHA512_CTX *context, char buffer[])
char * SHA512_Data (const sha2_byte *data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH])
void SHA384_Init (SHA384_CTX *context)
void SHA384_Update (SHA384_CTX *context, const sha2_byte *data, size_t len)
void SHA384_Final (sha2_byte digest[], SHA384_CTX *context)
char * SHA384_End (SHA384_CTX *context, char buffer[])
char * SHA384_Data (const sha2_byte *data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH])

Variables

static const sha2_word32 K256 [64]
static const sha2_word32 sha256_initial_hash_value [8]
static const sha2_word64 K512 [80]
static const sha2_word64 sha384_initial_hash_value [8]
static const sha2_word64 sha512_initial_hash_value [8]
static const char * sha2_hex_digits = "0123456789abcdef"

Define Documentation

#define ADDINC128 (   w,
  n 
)
Value:
{ \
       (w)[0] += (sha2_word64)(n); \
       if ((w)[0] < (n)) { \
              (w)[1]++; \
       } \
}

Definition at line 151 of file sha2.c.

#define Ch (   x,
  y,
 
)    (((x) & (y)) ^ ((~(x)) & (z)))

Definition at line 203 of file sha2.c.

#define Maj (   x,
  y,
 
)    (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

Definition at line 204 of file sha2.c.

#define MEMCPY_BCOPY (   d,
  s,
  l 
)    memcpy((d), (s), (l))

Definition at line 178 of file sha2.c.

#define MEMSET_BZERO (   p,
  l 
)    memset((p), 0, (l))

Definition at line 177 of file sha2.c.

#define R (   b,
 
)    ((x) >> (b))

Definition at line 196 of file sha2.c.

#define REVERSE32 (   w,
 
)
Value:
{ \
	sha2_word32 tmp = (w); \
       tmp = (tmp >> 16) | (tmp << 16); \
       (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
}

Definition at line 131 of file sha2.c.

#define REVERSE64 (   w,
 
)
Value:
{ \
	sha2_word64 tmp = (w); \
       tmp = (tmp >> 32) | (tmp << 32); \
       tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
             ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
       (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
             ((tmp & 0x0000ffff0000ffffULL) << 16); \
}

Definition at line 136 of file sha2.c.

#define S32 (   b,
 
)    (((x) >> (b)) | ((x) << (32 - (b))))

Definition at line 198 of file sha2.c.

#define S64 (   b,
 
)    (((x) >> (b)) | ((x) << (64 - (b))))

Definition at line 200 of file sha2.c.

Definition at line 124 of file sha2.c.

#define SHA2_USE_MEMSET_MEMCPY   1

Definition at line 169 of file sha2.c.

Definition at line 125 of file sha2.c.

Definition at line 126 of file sha2.c.

#define Sigma0_256 (   x)    (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))

Definition at line 207 of file sha2.c.

#define sigma0_256 (   x)    (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))

Definition at line 209 of file sha2.c.

#define Sigma0_512 (   x)    (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))

Definition at line 213 of file sha2.c.

#define sigma0_512 (   x)    (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))

Definition at line 215 of file sha2.c.

#define Sigma1_256 (   x)    (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))

Definition at line 208 of file sha2.c.

#define sigma1_256 (   x)    (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))

Definition at line 210 of file sha2.c.

#define Sigma1_512 (   x)    (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))

Definition at line 214 of file sha2.c.

#define sigma1_512 (   x)    (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))

Definition at line 216 of file sha2.c.


Typedef Documentation

typedef u_int8_t sha2_byte

Definition at line 115 of file sha2.c.

typedef u_int32_t sha2_word32

Definition at line 116 of file sha2.c.

typedef u_int64_t sha2_word64

Definition at line 117 of file sha2.c.


Function Documentation

char* SHA256_Data ( const sha2_byte data,
size_t  len,
char  digest[SHA256_DIGEST_STRING_LENGTH] 
)

Definition at line 655 of file sha2.c.

                                                                                               {
       SHA256_CTX    context;

       SHA256_Init(&context);
       SHA256_Update(&context, data, len);
       return SHA256_End(&context, digest);
}

Here is the call graph for this function:

char* SHA256_End ( SHA256_CTX context,
char  buffer[] 
)

Definition at line 632 of file sha2.c.

                                                     {
       sha2_byte     digest[SHA256_DIGEST_LENGTH], *d = digest;
       int           i;

       /* Sanity check: */
       assert(context != (SHA256_CTX*)0);

       if (buffer != (char*)0) {
              SHA256_Final(digest, context);

              for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
                     *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
                     *buffer++ = sha2_hex_digits[*d & 0x0f];
                     d++;
              }
              *buffer = (char)0;
       } else {
              MEMSET_BZERO(context, sizeof(context));
       }
       MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
       return buffer;
}

Here is the call graph for this function:

Here is the caller graph for this function:

void SHA256_Final ( sha2_byte  digest[],
SHA256_CTX context 
)

Definition at line 569 of file sha2.c.

                                                           {
       sha2_word32   *d = (sha2_word32*)digest;
       unsigned int  usedspace;

       /* Sanity check: */
       assert(context != (SHA256_CTX*)0);

       /* If no digest buffer is passed, we don't bother doing this: */
       if (digest != (sha2_byte*)0) {
              usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
#if BYTE_ORDER == LITTLE_ENDIAN
              /* Convert FROM host byte order */
              REVERSE64(context->bitcount,context->bitcount);
#endif
              if (usedspace > 0) {
                     /* Begin padding with a 1 bit: */
                     context->buffer[usedspace++] = 0x80;

                     if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
                            /* Set-up for the last transform: */
                            MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
                     } else {
                            if (usedspace < SHA256_BLOCK_LENGTH) {
                                   MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
                            }
                            /* Do second-to-last transform: */
                            SHA256_Transform(context, (sha2_word32*)context->buffer);

                            /* And set-up for the last transform: */
                            MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
                     }
              } else {
                     /* Set-up for the last transform: */
                     MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);

                     /* Begin padding with a 1 bit: */
                     *context->buffer = 0x80;
              }
              /* Set the bit count: */
              *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;

              /* Final transform: */
              SHA256_Transform(context, (sha2_word32*)context->buffer);

#if BYTE_ORDER == LITTLE_ENDIAN
              {
                     /* Convert TO host byte order */
                     int    j;
                     for (j = 0; j < 8; j++) {
                            REVERSE32(context->state[j],context->state[j]);
                            *d++ = context->state[j];
                     }
              }
#else
              MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
#endif
       }

       /* Clean up state data: */
       MEMSET_BZERO(context, sizeof(context));
       usedspace = 0;
}

Here is the call graph for this function:

Here is the caller graph for this function:

void SHA256_Init ( SHA256_CTX context)

Definition at line 337 of file sha2.c.

                                      {
       if (context == (SHA256_CTX*)0) {
              return;
       }
       MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
       MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
       context->bitcount = 0;
}

Here is the caller graph for this function:

void SHA256_Transform ( SHA256_CTX context,
const sha2_word32 data 
)

Definition at line 441 of file sha2.c.

                                                                    {
       sha2_word32   a, b, c, d, e, f, g, h, s0, s1;
       sha2_word32   T1, T2, *W256;
       int           j;

       W256 = (sha2_word32*)context->buffer;

       /* Initialize registers with the prev. intermediate value */
       a = context->state[0];
       b = context->state[1];
       c = context->state[2];
       d = context->state[3];
       e = context->state[4];
       f = context->state[5];
       g = context->state[6];
       h = context->state[7];

       j = 0;
       do {
#if BYTE_ORDER == LITTLE_ENDIAN
              /* Copy data while converting to host byte order */
              REVERSE32(*data++,W256[j]);
              /* Apply the SHA-256 compression function to update a..h */
              T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
#else /* BYTE_ORDER == LITTLE_ENDIAN */
              /* Apply the SHA-256 compression function to update a..h with copy */
              T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
              T2 = Sigma0_256(a) + Maj(a, b, c);
              h = g;
              g = f;
              f = e;
              e = d + T1;
              d = c;
              c = b;
              b = a;
              a = T1 + T2;

              j++;
       } while (j < 16);

       do {
              /* Part of the message block expansion: */
              s0 = W256[(j+1)&0x0f];
              s0 = sigma0_256(s0);
              s1 = W256[(j+14)&0x0f];     
              s1 = sigma1_256(s1);

              /* Apply the SHA-256 compression function to update a..h */
              T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 
                   (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
              T2 = Sigma0_256(a) + Maj(a, b, c);
              h = g;
              g = f;
              f = e;
              e = d + T1;
              d = c;
              c = b;
              b = a;
              a = T1 + T2;

              j++;
       } while (j < 64);

       /* Compute the current intermediate hash value */
       context->state[0] += a;
       context->state[1] += b;
       context->state[2] += c;
       context->state[3] += d;
       context->state[4] += e;
       context->state[5] += f;
       context->state[6] += g;
       context->state[7] += h;

       /* Clean up */
       a = b = c = d = e = f = g = h = T1 = T2 = 0;
}

Here is the caller graph for this function:

void SHA256_Update ( SHA256_CTX context,
const sha2_byte data,
size_t  len 
)

Definition at line 521 of file sha2.c.

                                                                           {
       unsigned int  freespace, usedspace;

       if (len == 0) {
              /* Calling with no data is valid - we do nothing */
              return;
       }

       /* Sanity check: */
       assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);

       usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
       if (usedspace > 0) {
              /* Calculate how much free space is available in the buffer */
              freespace = SHA256_BLOCK_LENGTH - usedspace;

              if (len >= freespace) {
                     /* Fill the buffer completely and process it */
                     MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
                     context->bitcount += freespace << 3;
                     len -= freespace;
                     data += freespace;
                     SHA256_Transform(context, (sha2_word32*)context->buffer);
              } else {
                     /* The buffer is not yet full */
                     MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
                     context->bitcount += len << 3;
                     /* Clean up: */
                     usedspace = freespace = 0;
                     return;
              }
       }
       while (len >= SHA256_BLOCK_LENGTH) {
              /* Process as many complete blocks as we can */
              SHA256_Transform(context, (sha2_word32*)data);
              context->bitcount += SHA256_BLOCK_LENGTH << 3;
              len -= SHA256_BLOCK_LENGTH;
              data += SHA256_BLOCK_LENGTH;
       }
       if (len > 0) {
              /* There's left-overs, so save 'em */
              MEMCPY_BCOPY(context->buffer, data, len);
              context->bitcount += len << 3;
       }
       /* Clean up: */
       usedspace = freespace = 0;
}

Here is the call graph for this function:

Here is the caller graph for this function:

char* SHA384_Data ( const sha2_byte data,
size_t  len,
char  digest[SHA384_DIGEST_STRING_LENGTH] 
)

Definition at line 1059 of file sha2.c.

                                                                                               {
       SHA384_CTX    context;

       SHA384_Init(&context);
       SHA384_Update(&context, data, len);
       return SHA384_End(&context, digest);
}

Here is the call graph for this function:

char* SHA384_End ( SHA384_CTX context,
char  buffer[] 
)

Definition at line 1036 of file sha2.c.

                                                     {
       sha2_byte     digest[SHA384_DIGEST_LENGTH], *d = digest;
       int           i;

       /* Sanity check: */
       assert(context != (SHA384_CTX*)0);

       if (buffer != (char*)0) {
              SHA384_Final(digest, context);

              for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
                     *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
                     *buffer++ = sha2_hex_digits[*d & 0x0f];
                     d++;
              }
              *buffer = (char)0;
       } else {
              MEMSET_BZERO(context, sizeof(context));
       }
       MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
       return buffer;
}

Here is the call graph for this function:

Here is the caller graph for this function:

void SHA384_Final ( sha2_byte  digest[],
SHA384_CTX context 
)

Definition at line 1007 of file sha2.c.

                                                           {
       sha2_word64   *d = (sha2_word64*)digest;

       /* Sanity check: */
       assert(context != (SHA384_CTX*)0);

       /* If no digest buffer is passed, we don't bother doing this: */
       if (digest != (sha2_byte*)0) {
              SHA512_Last((SHA512_CTX*)context);

              /* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
              {
                     /* Convert TO host byte order */
                     int    j;
                     for (j = 0; j < 6; j++) {
                            REVERSE64(context->state[j],context->state[j]);
                            *d++ = context->state[j];
                     }
              }
#else
              MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
#endif
       }

       /* Zero out state data */
       MEMSET_BZERO(context, sizeof(context));
}

Here is the call graph for this function:

Here is the caller graph for this function:

void SHA384_Init ( SHA384_CTX context)

Definition at line 994 of file sha2.c.

                                      {
       if (context == (SHA384_CTX*)0) {
              return;
       }
       MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
       MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
       context->bitcount[0] = context->bitcount[1] = 0;
}

Here is the caller graph for this function:

void SHA384_Update ( SHA384_CTX context,
const sha2_byte data,
size_t  len 
)

Definition at line 1003 of file sha2.c.

                                                                           {
       SHA512_Update((SHA512_CTX*)context, data, len);
}

Here is the call graph for this function:

Here is the caller graph for this function:

char* SHA512_Data ( const sha2_byte data,
size_t  len,
char  digest[SHA512_DIGEST_STRING_LENGTH] 
)

Definition at line 984 of file sha2.c.

                                                                                               {
       SHA512_CTX    context;

       SHA512_Init(&context);
       SHA512_Update(&context, data, len);
       return SHA512_End(&context, digest);
}

Here is the call graph for this function:

char* SHA512_End ( SHA512_CTX context,
char  buffer[] 
)

Definition at line 961 of file sha2.c.

                                                     {
       sha2_byte     digest[SHA512_DIGEST_LENGTH], *d = digest;
       int           i;

       /* Sanity check: */
       assert(context != (SHA512_CTX*)0);

       if (buffer != (char*)0) {
              SHA512_Final(digest, context);

              for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
                     *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
                     *buffer++ = sha2_hex_digits[*d & 0x0f];
                     d++;
              }
              *buffer = (char)0;
       } else {
              MEMSET_BZERO(context, sizeof(context));
       }
       MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
       return buffer;
}

Here is the call graph for this function:

Here is the caller graph for this function:

void SHA512_Final ( sha2_byte  digest[],
SHA512_CTX context 
)

Definition at line 932 of file sha2.c.

                                                           {
       sha2_word64   *d = (sha2_word64*)digest;

       /* Sanity check: */
       assert(context != (SHA512_CTX*)0);

       /* If no digest buffer is passed, we don't bother doing this: */
       if (digest != (sha2_byte*)0) {
              SHA512_Last(context);

              /* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
              {
                     /* Convert TO host byte order */
                     int    j;
                     for (j = 0; j < 8; j++) {
                            REVERSE64(context->state[j],context->state[j]);
                            *d++ = context->state[j];
                     }
              }
#else
              MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
#endif
       }

       /* Zero out state data */
       MEMSET_BZERO(context, sizeof(context));
}

Here is the call graph for this function:

Here is the caller graph for this function:

void SHA512_Init ( SHA512_CTX context)

Definition at line 665 of file sha2.c.

                                      {
       if (context == (SHA512_CTX*)0) {
              return;
       }
       MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
       MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
       context->bitcount[0] = context->bitcount[1] =  0;
}

Here is the caller graph for this function:

void SHA512_Last ( SHA512_CTX context)

Definition at line 891 of file sha2.c.

                                      {
       unsigned int  usedspace;

       usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
#if BYTE_ORDER == LITTLE_ENDIAN
       /* Convert FROM host byte order */
       REVERSE64(context->bitcount[0],context->bitcount[0]);
       REVERSE64(context->bitcount[1],context->bitcount[1]);
#endif
       if (usedspace > 0) {
              /* Begin padding with a 1 bit: */
              context->buffer[usedspace++] = 0x80;

              if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
                     /* Set-up for the last transform: */
                     MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
              } else {
                     if (usedspace < SHA512_BLOCK_LENGTH) {
                            MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
                     }
                     /* Do second-to-last transform: */
                     SHA512_Transform(context, (sha2_word64*)context->buffer);

                     /* And set-up for the last transform: */
                     MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
              }
       } else {
              /* Prepare for final transform: */
              MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);

              /* Begin padding with a 1 bit: */
              *context->buffer = 0x80;
       }
       /* Store the length of input data (in bits): */
       *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
       *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];

       /* Final transform: */
       SHA512_Transform(context, (sha2_word64*)context->buffer);
}

Here is the call graph for this function:

Here is the caller graph for this function:

void SHA512_Transform ( SHA512_CTX context,
const sha2_word64 data 
)

Definition at line 765 of file sha2.c.

                                                                    {
       sha2_word64   a, b, c, d, e, f, g, h, s0, s1;
       sha2_word64   T1, T2, *W512 = (sha2_word64*)context->buffer;
       int           j;

       /* Initialize registers with the prev. intermediate value */
       a = context->state[0];
       b = context->state[1];
       c = context->state[2];
       d = context->state[3];
       e = context->state[4];
       f = context->state[5];
       g = context->state[6];
       h = context->state[7];

       j = 0;
       do {
#if BYTE_ORDER == LITTLE_ENDIAN
              /* Convert TO host byte order */
              REVERSE64(*data++, W512[j]);
              /* Apply the SHA-512 compression function to update a..h */
              T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
#else /* BYTE_ORDER == LITTLE_ENDIAN */
              /* Apply the SHA-512 compression function to update a..h with copy */
              T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
              T2 = Sigma0_512(a) + Maj(a, b, c);
              h = g;
              g = f;
              f = e;
              e = d + T1;
              d = c;
              c = b;
              b = a;
              a = T1 + T2;

              j++;
       } while (j < 16);

       do {
              /* Part of the message block expansion: */
              s0 = W512[(j+1)&0x0f];
              s0 = sigma0_512(s0);
              s1 = W512[(j+14)&0x0f];
              s1 =  sigma1_512(s1);

              /* Apply the SHA-512 compression function to update a..h */
              T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
                   (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
              T2 = Sigma0_512(a) + Maj(a, b, c);
              h = g;
              g = f;
              f = e;
              e = d + T1;
              d = c;
              c = b;
              b = a;
              a = T1 + T2;

              j++;
       } while (j < 80);

       /* Compute the current intermediate hash value */
       context->state[0] += a;
       context->state[1] += b;
       context->state[2] += c;
       context->state[3] += d;
       context->state[4] += e;
       context->state[5] += f;
       context->state[6] += g;
       context->state[7] += h;

       /* Clean up */
       a = b = c = d = e = f = g = h = T1 = T2 = 0;
}

Here is the caller graph for this function:

void SHA512_Update ( SHA512_CTX context,
const sha2_byte data,
size_t  len 
)

Definition at line 843 of file sha2.c.

                                                                           {
       unsigned int  freespace, usedspace;

       if (len == 0) {
              /* Calling with no data is valid - we do nothing */
              return;
       }

       /* Sanity check: */
       assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);

       usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
       if (usedspace > 0) {
              /* Calculate how much free space is available in the buffer */
              freespace = SHA512_BLOCK_LENGTH - usedspace;

              if (len >= freespace) {
                     /* Fill the buffer completely and process it */
                     MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
                     ADDINC128(context->bitcount, freespace << 3);
                     len -= freespace;
                     data += freespace;
                     SHA512_Transform(context, (sha2_word64*)context->buffer);
              } else {
                     /* The buffer is not yet full */
                     MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
                     ADDINC128(context->bitcount, len << 3);
                     /* Clean up: */
                     usedspace = freespace = 0;
                     return;
              }
       }
       while (len >= SHA512_BLOCK_LENGTH) {
              /* Process as many complete blocks as we can */
              SHA512_Transform(context, (sha2_word64*)data);
              ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
              len -= SHA512_BLOCK_LENGTH;
              data += SHA512_BLOCK_LENGTH;
       }
       if (len > 0) {
              /* There's left-overs, so save 'em */
              MEMCPY_BCOPY(context->buffer, data, len);
              ADDINC128(context->bitcount, len << 3);
       }
       /* Clean up: */
       usedspace = freespace = 0;
}

Here is the call graph for this function:

Here is the caller graph for this function:


Variable Documentation

const sha2_word32 K256[64] [static]
Initial value:
 {
       0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
       0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
       0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
       0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
       0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
       0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
       0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
       0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
       0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
       0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
       0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
       0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
       0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
       0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
       0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
       0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
}

Definition at line 230 of file sha2.c.

const sha2_word64 K512[80] [static]

Definition at line 262 of file sha2.c.

Initial value:
 {
       0x6a09e667UL,
       0xbb67ae85UL,
       0x3c6ef372UL,
       0xa54ff53aUL,
       0x510e527fUL,
       0x9b05688cUL,
       0x1f83d9abUL,
       0x5be0cd19UL
}

Definition at line 250 of file sha2.c.

const char* sha2_hex_digits = "0123456789abcdef" [static]

Definition at line 333 of file sha2.c.

Initial value:
 {
       0xcbbb9d5dc1059ed8ULL,
       0x629a292a367cd507ULL,
       0x9159015a3070dd17ULL,
       0x152fecd8f70e5939ULL,
       0x67332667ffc00b31ULL,
       0x8eb44a8768581511ULL,
       0xdb0c2e0d64f98fa7ULL,
       0x47b5481dbefa4fa4ULL
}

Definition at line 306 of file sha2.c.

Initial value:
 {
       0x6a09e667f3bcc908ULL,
       0xbb67ae8584caa73bULL,
       0x3c6ef372fe94f82bULL,
       0xa54ff53a5f1d36f1ULL,
       0x510e527fade682d1ULL,
       0x9b05688c2b3e6c1fULL,
       0x1f83d9abfb41bd6bULL,
       0x5be0cd19137e2179ULL
}

Definition at line 318 of file sha2.c.