Back to index

nagios-plugins  1.4.16
Defines | Functions | Variables
sha1.c File Reference
#include <config.h>
#include "sha1.h"
#include <stddef.h>
#include <stdlib.h>
#include <string.h>

Go to the source code of this file.

Defines

#define SWAP(n)   (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
#define BLOCKSIZE   32768
#define alignof(type)   offsetof (struct { char c; type x; }, x)
#define UNALIGNED_P(p)   (((size_t) p) % alignof (uint32_t) != 0)
#define K1   0x5a827999
#define K2   0x6ed9eba1
#define K3   0x8f1bbcdc
#define K4   0xca62c1d6
#define F1(B, C, D)   ( D ^ ( B & ( C ^ D ) ) )
#define F2(B, C, D)   (B ^ C ^ D)
#define F3(B, C, D)   ( ( B & C ) | ( D & ( B | C ) ) )
#define F4(B, C, D)   (B ^ C ^ D)
#define rol(x, n)   (((x) << (n)) | ((uint32_t) (x) >> (32 - (n))))
#define M(I)
#define R(A, B, C, D, E, F, K, M)

Functions

void sha1_init_ctx (struct sha1_ctx *ctx)
static void set_uint32 (char *cp, uint32_t v)
void * sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf)
void * sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf)
int sha1_stream (FILE *stream, void *resblock)
void * sha1_buffer (const char *buffer, size_t len, void *resblock)
void sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx)
void sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx)

Variables

static const unsigned char fillbuf [64] = { 0x80, 0 }

Define Documentation

#define alignof (   type)    offsetof (struct { char c; type x; }, x)
#define BLOCKSIZE   32768

Definition at line 45 of file sha1.c.

#define F1 (   B,
  C,
 
)    ( D ^ ( B & ( C ^ D ) ) )

Definition at line 289 of file sha1.c.

#define F2 (   B,
  C,
 
)    (B ^ C ^ D)

Definition at line 290 of file sha1.c.

#define F3 (   B,
  C,
 
)    ( ( B & C ) | ( D & ( B | C ) ) )

Definition at line 291 of file sha1.c.

#define F4 (   B,
  C,
 
)    (B ^ C ^ D)

Definition at line 292 of file sha1.c.

#define K1   0x5a827999

Definition at line 283 of file sha1.c.

#define K2   0x6ed9eba1

Definition at line 284 of file sha1.c.

#define K3   0x8f1bbcdc

Definition at line 285 of file sha1.c.

#define K4   0xca62c1d6

Definition at line 286 of file sha1.c.

#define M (   I)
Value:
( tm =   x[I&0x0f] ^ x[(I-14)&0x0f] \
                    ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
               , (x[I&0x0f] = rol(tm, 1)) )
#define R (   A,
  B,
  C,
  D,
  E,
  F,
  K,
  M 
)
Value:
do { E += rol( A, 5 )     \
                                      + F( B, C, D )  \
                                      + K             \
                                      + M;            \
                                 B = rol( B, 30 );    \
                               } while(0)
#define rol (   x,
 
)    (((x) << (n)) | ((uint32_t) (x) >> (32 - (n))))
#define SWAP (   n)    (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))

Definition at line 41 of file sha1.c.

#define UNALIGNED_P (   p)    (((size_t) p) % alignof (uint32_t) != 0)

Function Documentation

static void set_uint32 ( char *  cp,
uint32_t  v 
) [inline, static]

Definition at line 75 of file sha1.c.

{
  memcpy (cp, &v, sizeof v);
}

Here is the caller graph for this function:

void* sha1_buffer ( const char *  buffer,
size_t  len,
void *  resblock 
)

Definition at line 199 of file sha1.c.

{
  struct sha1_ctx ctx;

  /* Initialize the computation context.  */
  sha1_init_ctx (&ctx);

  /* Process whole buffer but last len % 64 bytes.  */
  sha1_process_bytes (buffer, len, &ctx);

  /* Put result in desired memory area.  */
  return sha1_finish_ctx (&ctx, resblock);
}

Here is the call graph for this function:

void* sha1_finish_ctx ( struct sha1_ctx ctx,
void *  resbuf 
)

Definition at line 98 of file sha1.c.

{
  /* Take yet unprocessed bytes into account.  */
  uint32_t bytes = ctx->buflen;
  size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;

  /* Now count remaining bytes.  */
  ctx->total[0] += bytes;
  if (ctx->total[0] < bytes)
    ++ctx->total[1];

  /* Put the 64-bit file length in *bits* at the end of the buffer.  */
  ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
  ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3);

  memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);

  /* Process last bytes.  */
  sha1_process_block (ctx->buffer, size * 4, ctx);

  return sha1_read_ctx (ctx, resbuf);
}

Here is the call graph for this function:

Here is the caller graph for this function:

void sha1_init_ctx ( struct sha1_ctx ctx)

Definition at line 59 of file sha1.c.

{
  ctx->A = 0x67452301;
  ctx->B = 0xefcdab89;
  ctx->C = 0x98badcfe;
  ctx->D = 0x10325476;
  ctx->E = 0xc3d2e1f0;

  ctx->total[0] = ctx->total[1] = 0;
  ctx->buflen = 0;
}

Here is the caller graph for this function:

void sha1_process_block ( const void *  buffer,
size_t  len,
struct sha1_ctx ctx 
)

Definition at line 299 of file sha1.c.

{
  const uint32_t *words = buffer;
  size_t nwords = len / sizeof (uint32_t);
  const uint32_t *endp = words + nwords;
  uint32_t x[16];
  uint32_t a = ctx->A;
  uint32_t b = ctx->B;
  uint32_t c = ctx->C;
  uint32_t d = ctx->D;
  uint32_t e = ctx->E;

  /* First increment the byte count.  RFC 1321 specifies the possible
     length of the file up to 2^64 bits.  Here we only compute the
     number of bytes.  Do a double word increment.  */
  ctx->total[0] += len;
  if (ctx->total[0] < len)
    ++ctx->total[1];

#define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n))))

#define M(I) ( tm =   x[I&0x0f] ^ x[(I-14)&0x0f] \
                    ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
               , (x[I&0x0f] = rol(tm, 1)) )

#define R(A,B,C,D,E,F,K,M)  do { E += rol( A, 5 )     \
                                      + F( B, C, D )  \
                                      + K             \
                                      + M;            \
                                 B = rol( B, 30 );    \
                               } while(0)

  while (words < endp)
    {
      uint32_t tm;
      int t;
      for (t = 0; t < 16; t++)
        {
          x[t] = SWAP (*words);
          words++;
        }

      R( a, b, c, d, e, F1, K1, x[ 0] );
      R( e, a, b, c, d, F1, K1, x[ 1] );
      R( d, e, a, b, c, F1, K1, x[ 2] );
      R( c, d, e, a, b, F1, K1, x[ 3] );
      R( b, c, d, e, a, F1, K1, x[ 4] );
      R( a, b, c, d, e, F1, K1, x[ 5] );
      R( e, a, b, c, d, F1, K1, x[ 6] );
      R( d, e, a, b, c, F1, K1, x[ 7] );
      R( c, d, e, a, b, F1, K1, x[ 8] );
      R( b, c, d, e, a, F1, K1, x[ 9] );
      R( a, b, c, d, e, F1, K1, x[10] );
      R( e, a, b, c, d, F1, K1, x[11] );
      R( d, e, a, b, c, F1, K1, x[12] );
      R( c, d, e, a, b, F1, K1, x[13] );
      R( b, c, d, e, a, F1, K1, x[14] );
      R( a, b, c, d, e, F1, K1, x[15] );
      R( e, a, b, c, d, F1, K1, M(16) );
      R( d, e, a, b, c, F1, K1, M(17) );
      R( c, d, e, a, b, F1, K1, M(18) );
      R( b, c, d, e, a, F1, K1, M(19) );
      R( a, b, c, d, e, F2, K2, M(20) );
      R( e, a, b, c, d, F2, K2, M(21) );
      R( d, e, a, b, c, F2, K2, M(22) );
      R( c, d, e, a, b, F2, K2, M(23) );
      R( b, c, d, e, a, F2, K2, M(24) );
      R( a, b, c, d, e, F2, K2, M(25) );
      R( e, a, b, c, d, F2, K2, M(26) );
      R( d, e, a, b, c, F2, K2, M(27) );
      R( c, d, e, a, b, F2, K2, M(28) );
      R( b, c, d, e, a, F2, K2, M(29) );
      R( a, b, c, d, e, F2, K2, M(30) );
      R( e, a, b, c, d, F2, K2, M(31) );
      R( d, e, a, b, c, F2, K2, M(32) );
      R( c, d, e, a, b, F2, K2, M(33) );
      R( b, c, d, e, a, F2, K2, M(34) );
      R( a, b, c, d, e, F2, K2, M(35) );
      R( e, a, b, c, d, F2, K2, M(36) );
      R( d, e, a, b, c, F2, K2, M(37) );
      R( c, d, e, a, b, F2, K2, M(38) );
      R( b, c, d, e, a, F2, K2, M(39) );
      R( a, b, c, d, e, F3, K3, M(40) );
      R( e, a, b, c, d, F3, K3, M(41) );
      R( d, e, a, b, c, F3, K3, M(42) );
      R( c, d, e, a, b, F3, K3, M(43) );
      R( b, c, d, e, a, F3, K3, M(44) );
      R( a, b, c, d, e, F3, K3, M(45) );
      R( e, a, b, c, d, F3, K3, M(46) );
      R( d, e, a, b, c, F3, K3, M(47) );
      R( c, d, e, a, b, F3, K3, M(48) );
      R( b, c, d, e, a, F3, K3, M(49) );
      R( a, b, c, d, e, F3, K3, M(50) );
      R( e, a, b, c, d, F3, K3, M(51) );
      R( d, e, a, b, c, F3, K3, M(52) );
      R( c, d, e, a, b, F3, K3, M(53) );
      R( b, c, d, e, a, F3, K3, M(54) );
      R( a, b, c, d, e, F3, K3, M(55) );
      R( e, a, b, c, d, F3, K3, M(56) );
      R( d, e, a, b, c, F3, K3, M(57) );
      R( c, d, e, a, b, F3, K3, M(58) );
      R( b, c, d, e, a, F3, K3, M(59) );
      R( a, b, c, d, e, F4, K4, M(60) );
      R( e, a, b, c, d, F4, K4, M(61) );
      R( d, e, a, b, c, F4, K4, M(62) );
      R( c, d, e, a, b, F4, K4, M(63) );
      R( b, c, d, e, a, F4, K4, M(64) );
      R( a, b, c, d, e, F4, K4, M(65) );
      R( e, a, b, c, d, F4, K4, M(66) );
      R( d, e, a, b, c, F4, K4, M(67) );
      R( c, d, e, a, b, F4, K4, M(68) );
      R( b, c, d, e, a, F4, K4, M(69) );
      R( a, b, c, d, e, F4, K4, M(70) );
      R( e, a, b, c, d, F4, K4, M(71) );
      R( d, e, a, b, c, F4, K4, M(72) );
      R( c, d, e, a, b, F4, K4, M(73) );
      R( b, c, d, e, a, F4, K4, M(74) );
      R( a, b, c, d, e, F4, K4, M(75) );
      R( e, a, b, c, d, F4, K4, M(76) );
      R( d, e, a, b, c, F4, K4, M(77) );
      R( c, d, e, a, b, F4, K4, M(78) );
      R( b, c, d, e, a, F4, K4, M(79) );

      a = ctx->A += a;
      b = ctx->B += b;
      c = ctx->C += c;
      d = ctx->D += d;
      e = ctx->E += e;
    }
}

Here is the caller graph for this function:

void sha1_process_bytes ( const void *  buffer,
size_t  len,
struct sha1_ctx ctx 
)

Definition at line 214 of file sha1.c.

{
  /* When we already have some bits in our internal buffer concatenate
     both inputs first.  */
  if (ctx->buflen != 0)
    {
      size_t left_over = ctx->buflen;
      size_t add = 128 - left_over > len ? len : 128 - left_over;

      memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
      ctx->buflen += add;

      if (ctx->buflen > 64)
        {
          sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);

          ctx->buflen &= 63;
          /* The regions in the following copy operation cannot overlap.  */
          memcpy (ctx->buffer,
                  &((char *) ctx->buffer)[(left_over + add) & ~63],
                  ctx->buflen);
        }

      buffer = (const char *) buffer + add;
      len -= add;
    }

  /* Process available complete blocks.  */
  if (len >= 64)
    {
#if !_STRING_ARCH_unaligned
# define alignof(type) offsetof (struct { char c; type x; }, x)
# define UNALIGNED_P(p) (((size_t) p) % alignof (uint32_t) != 0)
      if (UNALIGNED_P (buffer))
        while (len > 64)
          {
            sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
            buffer = (const char *) buffer + 64;
            len -= 64;
          }
      else
#endif
        {
          sha1_process_block (buffer, len & ~63, ctx);
          buffer = (const char *) buffer + (len & ~63);
          len &= 63;
        }
    }

  /* Move remaining bytes in internal buffer.  */
  if (len > 0)
    {
      size_t left_over = ctx->buflen;

      memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
      left_over += len;
      if (left_over >= 64)
        {
          sha1_process_block (ctx->buffer, 64, ctx);
          left_over -= 64;
          memcpy (ctx->buffer, &ctx->buffer[16], left_over);
        }
      ctx->buflen = left_over;
    }
}

Here is the call graph for this function:

Here is the caller graph for this function:

void* sha1_read_ctx ( const struct sha1_ctx ctx,
void *  resbuf 
)

Definition at line 83 of file sha1.c.

{
  char *r = resbuf;
  set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A));
  set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B));
  set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C));
  set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D));
  set_uint32 (r + 4 * sizeof ctx->E, SWAP (ctx->E));

  return resbuf;
}

Here is the call graph for this function:

Here is the caller graph for this function:

int sha1_stream ( FILE *  stream,
void *  resblock 
)

Definition at line 125 of file sha1.c.

{
  struct sha1_ctx ctx;
  size_t sum;

  char *buffer = malloc (BLOCKSIZE + 72);
  if (!buffer)
    return 1;

  /* Initialize the computation context.  */
  sha1_init_ctx (&ctx);

  /* Iterate over full file contents.  */
  while (1)
    {
      /* We read the file in blocks of BLOCKSIZE bytes.  One call of the
         computation function processes the whole buffer so that with the
         next round of the loop another block can be read.  */
      size_t n;
      sum = 0;

      /* Read block.  Take care for partial reads.  */
      while (1)
        {
          n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);

          sum += n;

          if (sum == BLOCKSIZE)
            break;

          if (n == 0)
            {
              /* Check for the error flag IFF N == 0, so that we don't
                 exit the loop after a partial read due to e.g., EAGAIN
                 or EWOULDBLOCK.  */
              if (ferror (stream))
                {
                  free (buffer);
                  return 1;
                }
              goto process_partial_block;
            }

          /* We've read at least one byte, so ignore errors.  But always
             check for EOF, since feof may be true even though N > 0.
             Otherwise, we could end up calling fread after EOF.  */
          if (feof (stream))
            goto process_partial_block;
        }

      /* Process buffer with BLOCKSIZE bytes.  Note that
                        BLOCKSIZE % 64 == 0
       */
      sha1_process_block (buffer, BLOCKSIZE, &ctx);
    }

 process_partial_block:;

  /* Process any remaining bytes.  */
  if (sum > 0)
    sha1_process_bytes (buffer, sum, &ctx);

  /* Construct result in desired memory.  */
  sha1_finish_ctx (&ctx, resblock);
  free (buffer);
  return 0;
}

Here is the call graph for this function:


Variable Documentation

const unsigned char fillbuf[64] = { 0x80, 0 } [static]

Definition at line 52 of file sha1.c.