Back to index

lightning-sunbird  0.9+nobinonly
Classes | Defines | Typedefs | Functions | Variables
prdtoa.c File Reference
#include "primpl.h"
#include "stdlib.h"
#include "string.h"
#include "errno.h"
#include "float.h"
#include "math.h"

Go to the source code of this file.

Classes

union  U
struct  Bigint

Defines

#define MULTIPLE_THREADS
#define ACQUIRE_DTOA_LOCK(n)   PR_Lock(dtoa_lock[n])
#define FREE_DTOA_LOCK(n)   PR_Unlock(dtoa_lock[n])
#define IEEE_MC68k
#define Long   PRInt32
#define ULong   PRUint32
#define NO_LONG_LONG
#define MALLOC   malloc
#define PRIVATE_MEM   2304
#define PRIVATE_mem   ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
#define IEEE_Arith
#define CONST   const
#define word0(x)   ((U*)&x)->L[0]
#define word1(x)   ((U*)&x)->L[1]
#define dval(x)   ((U*)&x)->d
#define Storeinc(a, b, c)
#define Exp_shift   20
#define Exp_shift1   20
#define Exp_msk1   0x100000
#define Exp_msk11   0x100000
#define Exp_mask   0x7ff00000
#define P   53
#define Bias   1023
#define Emin   (-1022)
#define Exp_1   0x3ff00000
#define Exp_11   0x3ff00000
#define Ebits   11
#define Frac_mask   0xfffff
#define Frac_mask1   0xfffff
#define Ten_pmax   22
#define Bletch   0x10
#define Bndry_mask   0xfffff
#define Bndry_mask1   0xfffff
#define LSB   1
#define Sign_bit   0x80000000
#define Log2P   1
#define Tiny0   0
#define Tiny1   1
#define Quick_max   14
#define Int_max   14
#define Avoid_Underflow
#define Flt_Rounds   1
#define Rounding   Flt_Rounds
#define rounded_product(a, b)   a *= b
#define rounded_quotient(a, b)   a /= b
#define Big0   (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
#define Big1   0xffffffff
#define Pack_32
#define FFFFFFFF   0xffffffffUL
#define Kmax   15
#define Bcopy(x, y)
#define d0   word0(d)
#define d1   word1(d)
#define d0   word0(d)
#define d1   word1(d)
#define Scale_Bit   0x10
#define n_bigtens   5

Typedefs

typedef struct Bigint

Functions

void _PR_InitDtoa (void)
void _PR_CleanupDtoa (void)
static BigintBalloc (int k)
static void Bfree (Bigint *v)
static Bigintmultadd (Bigint *b, int m, int a)
static Bigints2b (CONST char *s, int nd0, int nd, ULong y9)
static int hi0bits (register ULong x)
static int lo0bits (ULong *y)
static Biginti2b (int i)
static Bigintmult (Bigint *a, Bigint *b)
static Bigintpow5mult (Bigint *b, int k)
static Bigintlshift (Bigint *b, int k)
static int cmp (Bigint *a, Bigint *b)
static Bigintdiff (Bigint *a, Bigint *b)
static double ulp (double x)
static double b2d (Bigint *a, int *e)
static Bigintd2b (double d, int *e, int *bits)
static double ratio (Bigint *a, Bigint *b)
 PR_strtod (CONST char *s00, char **se)
static int quorem (Bigint *b, Bigint *S)
static char * rv_alloc (int i)
static char * nrv_alloc (char *s, char **rve, int n)
void freedtoa (char *s)
static char * dtoa (double d, int mode, int ndigits, int *decpt, int *sign, char **rve)
 PR_dtoa (PRFloat64 d, PRIntn mode, PRIntn ndigits, PRIntn *decpt, PRIntn *sign, char **rve, char *buf, PRSize bufsize)
 PR_cnvtf (char *buf, int bufsz, int prcsn, double fval)

Variables

static PRLockdtoa_lock [2]
static double private_mem [PRIVATE_mem]
static double * pmem_next = private_mem
static Bigintfreelist [Kmax+1]
static Bigintp5s
static CONST double tens []
static CONST double bigtens [] = { 1e16, 1e32, 1e64, 1e128, 1e256 }
static CONST double tinytens []

Class Documentation

union U

Definition at line 358 of file prdtoa.c.

Class Members
double d
ULong L
struct Bigint

Definition at line 330 of file jsdtoa.c.

Collaboration diagram for Bigint:
Class Members
int32 k
int k
int32 maxwds
int maxwds
struct Bigint * next
int32 sign
int sign
int32 wds
int wds
ULong x

Define Documentation

Definition at line 41 of file prdtoa.c.

Definition at line 424 of file prdtoa.c.

#define Bcopy (   x,
  y 
)
Value:
memcpy((char *)&x->sign, (char *)&y->sign, \
y->wds*sizeof(Long) + 2*sizeof(int))

Definition at line 630 of file prdtoa.c.

#define Bias   1023

Definition at line 405 of file prdtoa.c.

#define Big0   (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))

Definition at line 524 of file prdtoa.c.

#define Big1   0xffffffff

Definition at line 525 of file prdtoa.c.

#define Bletch   0x10

Definition at line 413 of file prdtoa.c.

#define Bndry_mask   0xfffff

Definition at line 414 of file prdtoa.c.

#define Bndry_mask1   0xfffff

Definition at line 415 of file prdtoa.c.

Definition at line 350 of file prdtoa.c.

#define d0   word0(d)
#define d0   word0(d)
#define d1   word1(d)
#define d1   word1(d)
#define dval (   x)    ((U*)&x)->d

Definition at line 377 of file prdtoa.c.

#define Ebits   11

Definition at line 409 of file prdtoa.c.

#define Emin   (-1022)

Definition at line 406 of file prdtoa.c.

#define Exp_1   0x3ff00000

Definition at line 407 of file prdtoa.c.

#define Exp_11   0x3ff00000

Definition at line 408 of file prdtoa.c.

#define Exp_mask   0x7ff00000

Definition at line 403 of file prdtoa.c.

#define Exp_msk1   0x100000

Definition at line 401 of file prdtoa.c.

#define Exp_msk11   0x100000

Definition at line 402 of file prdtoa.c.

#define Exp_shift   20

Definition at line 399 of file prdtoa.c.

#define Exp_shift1   20

Definition at line 400 of file prdtoa.c.

#define FFFFFFFF   0xffffffffUL

Definition at line 534 of file prdtoa.c.

#define Flt_Rounds   1

Definition at line 434 of file prdtoa.c.

#define Frac_mask   0xfffff

Definition at line 410 of file prdtoa.c.

#define Frac_mask1   0xfffff

Definition at line 411 of file prdtoa.c.

Definition at line 42 of file prdtoa.c.

Definition at line 283 of file prdtoa.c.

Definition at line 68 of file prdtoa.c.

#define Int_max   14

Definition at line 422 of file prdtoa.c.

#define Kmax   15

Definition at line 561 of file prdtoa.c.

#define Log2P   1

Definition at line 418 of file prdtoa.c.

Definition at line 71 of file prdtoa.c.

#define LSB   1

Definition at line 416 of file prdtoa.c.

Definition at line 269 of file prdtoa.c.

Definition at line 40 of file prdtoa.c.

#define n_bigtens   5

Definition at line 1498 of file prdtoa.c.

Definition at line 73 of file prdtoa.c.

#define P   53

Definition at line 404 of file prdtoa.c.

Definition at line 528 of file prdtoa.c.

#define PRIVATE_MEM   2304

Definition at line 274 of file prdtoa.c.

#define PRIVATE_mem   ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))

Definition at line 276 of file prdtoa.c.

#define Quick_max   14

Definition at line 421 of file prdtoa.c.

#define rounded_product (   a,
  b 
)    a *= b

Definition at line 520 of file prdtoa.c.

#define rounded_quotient (   a,
  b 
)    a /= b

Definition at line 521 of file prdtoa.c.

Definition at line 443 of file prdtoa.c.

#define Scale_Bit   0x10

Definition at line 1497 of file prdtoa.c.

#define Sign_bit   0x80000000

Definition at line 417 of file prdtoa.c.

#define Storeinc (   a,
  b,
  c 
)
Value:
(((unsigned short *)a)[0] = (unsigned short)b, \
((unsigned short *)a)[1] = (unsigned short)c, a++)

Definition at line 388 of file prdtoa.c.

#define Ten_pmax   22

Definition at line 412 of file prdtoa.c.

#define Tiny0   0

Definition at line 419 of file prdtoa.c.

#define Tiny1   1

Definition at line 420 of file prdtoa.c.

Definition at line 72 of file prdtoa.c.

#define word0 (   x)    ((U*)&x)->L[0]

Definition at line 374 of file prdtoa.c.

#define word1 (   x)    ((U*)&x)->L[1]

Definition at line 375 of file prdtoa.c.


Typedef Documentation

typedef struct Bigint

Definition at line 570 of file prdtoa.c.


Function Documentation

Definition at line 52 of file prdtoa.c.

{
    PR_DestroyLock(dtoa_lock[0]);
    dtoa_lock[0] = NULL;
    PR_DestroyLock(dtoa_lock[1]);
    dtoa_lock[1] = NULL;

    /* FIXME: deal with freelist and p5s. */
}

Here is the call graph for this function:

Here is the caller graph for this function:

Definition at line 46 of file prdtoa.c.

Here is the call graph for this function:

Here is the caller graph for this function:

static double b2d ( Bigint a,
int e 
) [static]

Definition at line 1230 of file prdtoa.c.

{
       ULong *xa, *xa0, w, y, z;
       int k;
       double d;
#ifdef VAX
       ULong d0, d1;
#else
#define d0 word0(d)
#define d1 word1(d)
#endif

       xa0 = a->x;
       xa = xa0 + a->wds;
       y = *--xa;
#ifdef DEBUG
       if (!y) Bug("zero y in b2d");
#endif
       k = hi0bits(y);
       *e = 32 - k;
#ifdef Pack_32
       if (k < Ebits) {
              d0 = Exp_1 | y >> Ebits - k;
              w = xa > xa0 ? *--xa : 0;
              d1 = y << (32-Ebits) + k | w >> Ebits - k;
              goto ret_d;
              }
       z = xa > xa0 ? *--xa : 0;
       if (k -= Ebits) {
              d0 = Exp_1 | y << k | z >> 32 - k;
              y = xa > xa0 ? *--xa : 0;
              d1 = z << k | y >> 32 - k;
              }
       else {
              d0 = Exp_1 | y;
              d1 = z;
              }
#else
       if (k < Ebits + 16) {
              z = xa > xa0 ? *--xa : 0;
              d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
              w = xa > xa0 ? *--xa : 0;
              y = xa > xa0 ? *--xa : 0;
              d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
              goto ret_d;
              }
       z = xa > xa0 ? *--xa : 0;
       w = xa > xa0 ? *--xa : 0;
       k -= Ebits + 16;
       d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
       y = xa > xa0 ? *--xa : 0;
       d1 = w << k + 16 | y << k;
#endif
 ret_d:
#ifdef VAX
       word0(d) = d0 >> 16 | d0 << 16;
       word1(d) = d1 >> 16 | d1 << 16;
#else
#undef d0
#undef d1
#endif
       return dval(d);
       }

Here is the call graph for this function:

Here is the caller graph for this function:

static Bigint* Balloc ( int  k) [static]

Definition at line 579 of file prdtoa.c.

{
       int x;
       Bigint *rv;
#ifndef Omit_Private_Memory
       unsigned int len;
#endif

       ACQUIRE_DTOA_LOCK(0);
       if (rv = freelist[k]) {
              freelist[k] = rv->next;
              }
       else {
              x = 1 << k;
#ifdef Omit_Private_Memory
              rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
#else
              len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
                     /sizeof(double);
              if (pmem_next - private_mem + len <= PRIVATE_mem) {
                     rv = (Bigint*)pmem_next;
                     pmem_next += len;
                     }
              else
                     rv = (Bigint*)MALLOC(len*sizeof(double));
#endif
              rv->k = k;
              rv->maxwds = x;
              }
       FREE_DTOA_LOCK(0);
       rv->sign = rv->wds = 0;
       return rv;
       }

Here is the caller graph for this function:

static void Bfree ( Bigint v) [static]

Definition at line 619 of file prdtoa.c.

{
       if (v) {
              ACQUIRE_DTOA_LOCK(0);
              v->next = freelist[v->k];
              freelist[v->k] = v;
              FREE_DTOA_LOCK(0);
              }
       }

Here is the caller graph for this function:

static int cmp ( Bigint a,
Bigint b 
) [static]

Definition at line 1060 of file prdtoa.c.

{
       ULong *xa, *xa0, *xb, *xb0;
       int i, j;

       i = a->wds;
       j = b->wds;
#ifdef DEBUG
       if (i > 1 && !a->x[i-1])
              Bug("cmp called with a->x[a->wds-1] == 0");
       if (j > 1 && !b->x[j-1])
              Bug("cmp called with b->x[b->wds-1] == 0");
#endif
       if (i -= j)
              return i;
       xa0 = a->x;
       xa = xa0 + j;
       xb0 = b->x;
       xb = xb0 + j;
       for(;;) {
              if (*--xa != *--xb)
                     return *xa < *xb ? -1 : 1;
              if (xa <= xa0)
                     break;
              }
       return 0;
       }
static Bigint* d2b ( double  d,
int e,
int bits 
) [static]

Definition at line 1300 of file prdtoa.c.

{
       Bigint *b;
       int de, k;
       ULong *x, y, z;
#ifndef Sudden_Underflow
       int i;
#endif
#ifdef VAX
       ULong d0, d1;
       d0 = word0(d) >> 16 | word0(d) << 16;
       d1 = word1(d) >> 16 | word1(d) << 16;
#else
#define d0 word0(d)
#define d1 word1(d)
#endif

#ifdef Pack_32
       b = Balloc(1);
#else
       b = Balloc(2);
#endif
       x = b->x;

       z = d0 & Frac_mask;
       d0 &= 0x7fffffff;    /* clear sign bit, which we ignore */
#ifdef Sudden_Underflow
       de = (int)(d0 >> Exp_shift);
#ifndef IBM
       z |= Exp_msk11;
#endif
#else
       if (de = (int)(d0 >> Exp_shift))
              z |= Exp_msk1;
#endif
#ifdef Pack_32
       if (y = d1) {
              if (k = lo0bits(&y)) {
                     x[0] = y | z << 32 - k;
                     z >>= k;
                     }
              else
                     x[0] = y;
#ifndef Sudden_Underflow
              i =
#endif
                  b->wds = (x[1] = z) ? 2 : 1;
              }
       else {
#ifdef DEBUG
              if (!z)
                     Bug("Zero passed to d2b");
#endif
              k = lo0bits(&z);
              x[0] = z;
#ifndef Sudden_Underflow
              i =
#endif
                  b->wds = 1;
              k += 32;
              }
#else
       if (y = d1) {
              if (k = lo0bits(&y))
                     if (k >= 16) {
                            x[0] = y | z << 32 - k & 0xffff;
                            x[1] = z >> k - 16 & 0xffff;
                            x[2] = z >> k;
                            i = 2;
                            }
                     else {
                            x[0] = y & 0xffff;
                            x[1] = y >> 16 | z << 16 - k & 0xffff;
                            x[2] = z >> k & 0xffff;
                            x[3] = z >> k+16;
                            i = 3;
                            }
              else {
                     x[0] = y & 0xffff;
                     x[1] = y >> 16;
                     x[2] = z & 0xffff;
                     x[3] = z >> 16;
                     i = 3;
                     }
              }
       else {
#ifdef DEBUG
              if (!z)
                     Bug("Zero passed to d2b");
#endif
              k = lo0bits(&z);
              if (k >= 16) {
                     x[0] = z;
                     i = 0;
                     }
              else {
                     x[0] = z & 0xffff;
                     x[1] = z >> 16;
                     i = 1;
                     }
              k += 32;
              }
       while(!x[i])
              --i;
       b->wds = i + 1;
#endif
#ifndef Sudden_Underflow
       if (de) {
#endif
#ifdef IBM
              *e = (de - Bias - (P-1) << 2) + k;
              *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
#else
              *e = de - Bias - (P-1) + k;
              *bits = P - k;
#endif
#ifndef Sudden_Underflow
              }
       else {
              *e = de - Bias - (P-1) + 1 + k;
#ifdef Pack_32
              *bits = 32*i - hi0bits(x[i-1]);
#else
              *bits = (i+2)*16 - hi0bits(x[i]);
#endif
              }
#endif
       return b;
       }

Here is the call graph for this function:

Here is the caller graph for this function:

static Bigint* diff ( Bigint a,
Bigint b 
) [static]

Definition at line 1094 of file prdtoa.c.

{
       Bigint *c;
       int i, wa, wb;
       ULong *xa, *xae, *xb, *xbe, *xc;
#ifdef ULLong
       ULLong borrow, y;
#else
       ULong borrow, y;
#ifdef Pack_32
       ULong z;
#endif
#endif

       i = cmp(a,b);
       if (!i) {
              c = Balloc(0);
              c->wds = 1;
              c->x[0] = 0;
              return c;
              }
       if (i < 0) {
              c = a;
              a = b;
              b = c;
              i = 1;
              }
       else
              i = 0;
       c = Balloc(a->k);
       c->sign = i;
       wa = a->wds;
       xa = a->x;
       xae = xa + wa;
       wb = b->wds;
       xb = b->x;
       xbe = xb + wb;
       xc = c->x;
       borrow = 0;
#ifdef ULLong
       do {
              y = (ULLong)*xa++ - *xb++ - borrow;
              borrow = y >> 32 & (ULong)1;
              *xc++ = y & FFFFFFFF;
              }
              while(xb < xbe);
       while(xa < xae) {
              y = *xa++ - borrow;
              borrow = y >> 32 & (ULong)1;
              *xc++ = y & FFFFFFFF;
              }
#else
#ifdef Pack_32
       do {
              y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
              borrow = (y & 0x10000) >> 16;
              z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
              borrow = (z & 0x10000) >> 16;
              Storeinc(xc, z, y);
              }
              while(xb < xbe);
       while(xa < xae) {
              y = (*xa & 0xffff) - borrow;
              borrow = (y & 0x10000) >> 16;
              z = (*xa++ >> 16) - borrow;
              borrow = (z & 0x10000) >> 16;
              Storeinc(xc, z, y);
              }
#else
       do {
              y = *xa++ - *xb++ - borrow;
              borrow = (y & 0x10000) >> 16;
              *xc++ = y & 0xffff;
              }
              while(xb < xbe);
       while(xa < xae) {
              y = *xa++ - borrow;
              borrow = (y & 0x10000) >> 16;
              *xc++ = y & 0xffff;
              }
#endif
#endif
       while(!*--xc)
              wa--;
       c->wds = wa;
       return c;
       }

Here is the call graph for this function:

Here is the caller graph for this function:

static char* dtoa ( double  d,
int  mode,
int  ndigits,
int decpt,
int sign,
char **  rve 
) [static]

Definition at line 2716 of file prdtoa.c.

{
 /*    Arguments ndigits, decpt, sign are similar to those
       of ecvt and fcvt; trailing zeros are suppressed from
       the returned string.  If not null, *rve is set to point
       to the end of the return value.  If d is +-Infinity or NaN,
       then *decpt is set to 9999.

       mode:
              0 ==> shortest string that yields d when read in
                     and rounded to nearest.
              1 ==> like 0, but with Steele & White stopping rule;
                     e.g. with IEEE P754 arithmetic , mode 0 gives
                     1e23 whereas mode 1 gives 9.999999999999999e22.
              2 ==> max(1,ndigits) significant digits.  This gives a
                     return value similar to that of ecvt, except
                     that trailing zeros are suppressed.
              3 ==> through ndigits past the decimal point.  This
                     gives a return value similar to that from fcvt,
                     except that trailing zeros are suppressed, and
                     ndigits can be negative.
              4,5 ==> similar to 2 and 3, respectively, but (in
                     round-nearest mode) with the tests of mode 0 to
                     possibly return a shorter string that rounds to d.
                     With IEEE arithmetic and compilation with
                     -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
                     as modes 2 and 3 when FLT_ROUNDS != 1.
              6-9 ==> Debugging modes similar to mode - 4:  don't try
                     fast floating-point estimate (if applicable).

              Values of mode other than 0-9 are treated as mode 0.

              Sufficient space is allocated to the return value
              to hold the suppressed trailing zeros.
       */

       int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
              j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
              spec_case, try_quick;
       Long L;
#ifndef Sudden_Underflow
       int denorm;
       ULong x;
#endif
       Bigint *b, *b1, *delta, *mlo, *mhi, *S;
       double d2, ds, eps;
       char *s, *s0;
#ifdef Honor_FLT_ROUNDS
       int rounding;
#endif
#ifdef SET_INEXACT
       int inexact, oldinexact;
#endif

#ifndef MULTIPLE_THREADS
       if (dtoa_result) {
              freedtoa(dtoa_result);
              dtoa_result = 0;
              }
#endif

       if (word0(d) & Sign_bit) {
              /* set sign for everything, including 0's and NaNs */
              *sign = 1;
              word0(d) &= ~Sign_bit;      /* clear sign bit */
              }
       else
              *sign = 0;

#if defined(IEEE_Arith) + defined(VAX)
#ifdef IEEE_Arith
       if ((word0(d) & Exp_mask) == Exp_mask)
#else
       if (word0(d)  == 0x8000)
#endif
              {
              /* Infinity or NaN */
              *decpt = 9999;
#ifdef IEEE_Arith
              if (!word1(d) && !(word0(d) & 0xfffff))
                     return nrv_alloc("Infinity", rve, 8);
#endif
              return nrv_alloc("NaN", rve, 3);
              }
#endif
#ifdef IBM
       dval(d) += 0; /* normalize */
#endif
       if (!dval(d)) {
              *decpt = 1;
              return nrv_alloc("0", rve, 1);
              }

#ifdef SET_INEXACT
       try_quick = oldinexact = get_inexact();
       inexact = 1;
#endif
#ifdef Honor_FLT_ROUNDS
       if ((rounding = Flt_Rounds) >= 2) {
              if (*sign)
                     rounding = rounding == 2 ? 0 : 2;
              else
                     if (rounding != 2)
                            rounding = 0;
              }
#endif

       b = d2b(dval(d), &be, &bbits);
#ifdef Sudden_Underflow
       i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
#else
       if (i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) {
#endif
              dval(d2) = dval(d);
              word0(d2) &= Frac_mask1;
              word0(d2) |= Exp_11;
#ifdef IBM
              if (j = 11 - hi0bits(word0(d2) & Frac_mask))
                     dval(d2) /= 1 << j;
#endif

              /* log(x)     ~=~ log(1.5) + (x-1.5)/1.5
               * log10(x)    =  log(x) / log(10)
               *            ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
               * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
               *
               * This suggests computing an approximation k to log10(d) by
               *
               * k = (i - Bias)*0.301029995663981
               *     + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
               *
               * We want k to be too large rather than too small.
               * The error in the first-order Taylor series approximation
               * is in our favor, so we just round up the constant enough
               * to compensate for any error in the multiplication of
               * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
               * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
               * adding 1e-13 to the constant term more than suffices.
               * Hence we adjust the constant term to 0.1760912590558.
               * (We could get a more accurate k by invoking log10,
               *  but this is probably not worthwhile.)
               */

              i -= Bias;
#ifdef IBM
              i <<= 2;
              i += j;
#endif
#ifndef Sudden_Underflow
              denorm = 0;
              }
       else {
              /* d is denormalized */

              i = bbits + be + (Bias + (P-1) - 1);
              x = i > 32  ? word0(d) << 64 - i | word1(d) >> i - 32
                         : word1(d) << 32 - i;
              dval(d2) = x;
              word0(d2) -= 31*Exp_msk1; /* adjust exponent */
              i -= (Bias + (P-1) - 1) + 1;
              denorm = 1;
              }
#endif
       ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
       k = (int)ds;
       if (ds < 0. && ds != k)
              k--;   /* want k = floor(ds) */
       k_check = 1;
       if (k >= 0 && k <= Ten_pmax) {
              if (dval(d) < tens[k])
                     k--;
              k_check = 0;
              }
       j = bbits - i - 1;
       if (j >= 0) {
              b2 = 0;
              s2 = j;
              }
       else {
              b2 = -j;
              s2 = 0;
              }
       if (k >= 0) {
              b5 = 0;
              s5 = k;
              s2 += k;
              }
       else {
              b2 -= k;
              b5 = -k;
              s5 = 0;
              }
       if (mode < 0 || mode > 9)
              mode = 0;

#ifndef SET_INEXACT
#ifdef Check_FLT_ROUNDS
       try_quick = Rounding == 1;
#else
       try_quick = 1;
#endif
#endif /*SET_INEXACT*/

       if (mode > 5) {
              mode -= 4;
              try_quick = 0;
              }
       leftright = 1;
       switch(mode) {
              case 0:
              case 1:
                     ilim = ilim1 = -1;
                     i = 18;
                     ndigits = 0;
                     break;
              case 2:
                     leftright = 0;
                     /* no break */
              case 4:
                     if (ndigits <= 0)
                            ndigits = 1;
                     ilim = ilim1 = i = ndigits;
                     break;
              case 3:
                     leftright = 0;
                     /* no break */
              case 5:
                     i = ndigits + k + 1;
                     ilim = i;
                     ilim1 = i - 1;
                     if (i <= 0)
                            i = 1;
              }
       s = s0 = rv_alloc(i);

#ifdef Honor_FLT_ROUNDS
       if (mode > 1 && rounding != 1)
              leftright = 0;
#endif

       if (ilim >= 0 && ilim <= Quick_max && try_quick) {

              /* Try to get by with floating-point arithmetic. */

              i = 0;
              dval(d2) = dval(d);
              k0 = k;
              ilim0 = ilim;
              ieps = 2; /* conservative */
              if (k > 0) {
                     ds = tens[k&0xf];
                     j = k >> 4;
                     if (j & Bletch) {
                            /* prevent overflows */
                            j &= Bletch - 1;
                            dval(d) /= bigtens[n_bigtens-1];
                            ieps++;
                            }
                     for(; j; j >>= 1, i++)
                            if (j & 1) {
                                   ieps++;
                                   ds *= bigtens[i];
                                   }
                     dval(d) /= ds;
                     }
              else if (j1 = -k) {
                     dval(d) *= tens[j1 & 0xf];
                     for(j = j1 >> 4; j; j >>= 1, i++)
                            if (j & 1) {
                                   ieps++;
                                   dval(d) *= bigtens[i];
                                   }
                     }
              if (k_check && dval(d) < 1. && ilim > 0) {
                     if (ilim1 <= 0)
                            goto fast_failed;
                     ilim = ilim1;
                     k--;
                     dval(d) *= 10.;
                     ieps++;
                     }
              dval(eps) = ieps*dval(d) + 7.;
              word0(eps) -= (P-1)*Exp_msk1;
              if (ilim == 0) {
                     S = mhi = 0;
                     dval(d) -= 5.;
                     if (dval(d) > dval(eps))
                            goto one_digit;
                     if (dval(d) < -dval(eps))
                            goto no_digits;
                     goto fast_failed;
                     }
#ifndef No_leftright
              if (leftright) {
                     /* Use Steele & White method of only
                      * generating digits needed.
                      */
                     dval(eps) = 0.5/tens[ilim-1] - dval(eps);
                     for(i = 0;;) {
                            L = dval(d);
                            dval(d) -= L;
                            *s++ = '0' + (int)L;
                            if (dval(d) < dval(eps))
                                   goto ret1;
                            if (1. - dval(d) < dval(eps))
                                   goto bump_up;
                            if (++i >= ilim)
                                   break;
                            dval(eps) *= 10.;
                            dval(d) *= 10.;
                            }
                     }
              else {
#endif
                     /* Generate ilim digits, then fix them up. */
                     dval(eps) *= tens[ilim-1];
                     for(i = 1;; i++, dval(d) *= 10.) {
                            L = (Long)(dval(d));
                            if (!(dval(d) -= L))
                                   ilim = i;
                            *s++ = '0' + (int)L;
                            if (i == ilim) {
                                   if (dval(d) > 0.5 + dval(eps))
                                          goto bump_up;
                                   else if (dval(d) < 0.5 - dval(eps)) {
                                          while(*--s == '0');
                                          s++;
                                          goto ret1;
                                          }
                                   break;
                                   }
                            }
#ifndef No_leftright
                     }
#endif
 fast_failed:
              s = s0;
              dval(d) = dval(d2);
              k = k0;
              ilim = ilim0;
              }

       /* Do we have a "small" integer? */

       if (be >= 0 && k <= Int_max) {
              /* Yes. */
              ds = tens[k];
              if (ndigits < 0 && ilim <= 0) {
                     S = mhi = 0;
                     if (ilim < 0 || dval(d) <= 5*ds)
                            goto no_digits;
                     goto one_digit;
                     }
              for(i = 1; i <= k+1; i++, dval(d) *= 10.) {
                     L = (Long)(dval(d) / ds);
                     dval(d) -= L*ds;
#ifdef Check_FLT_ROUNDS
                     /* If FLT_ROUNDS == 2, L will usually be high by 1 */
                     if (dval(d) < 0) {
                            L--;
                            dval(d) += ds;
                            }
#endif
                     *s++ = '0' + (int)L;
                     if (!dval(d)) {
#ifdef SET_INEXACT
                            inexact = 0;
#endif
                            break;
                            }
                     if (i == ilim) {
#ifdef Honor_FLT_ROUNDS
                            if (mode > 1)
                            switch(rounding) {
                              case 0: goto ret1;
                              case 2: goto bump_up;
                              }
#endif
                            dval(d) += dval(d);
                            if (dval(d) > ds || dval(d) == ds && L & 1) {
 bump_up:
                                   while(*--s == '9')
                                          if (s == s0) {
                                                 k++;
                                                 *s = '0';
                                                 break;
                                                 }
                                   ++*s++;
                                   }
                            break;
                            }
                     }
              goto ret1;
              }

       m2 = b2;
       m5 = b5;
       mhi = mlo = 0;
       if (leftright) {
              i =
#ifndef Sudden_Underflow
                     denorm ? be + (Bias + (P-1) - 1 + 1) :
#endif
#ifdef IBM
                     1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
#else
                     1 + P - bbits;
#endif
              b2 += i;
              s2 += i;
              mhi = i2b(1);
              }
       if (m2 > 0 && s2 > 0) {
              i = m2 < s2 ? m2 : s2;
              b2 -= i;
              m2 -= i;
              s2 -= i;
              }
       if (b5 > 0) {
              if (leftright) {
                     if (m5 > 0) {
                            mhi = pow5mult(mhi, m5);
                            b1 = mult(mhi, b);
                            Bfree(b);
                            b = b1;
                            }
                     if (j = b5 - m5)
                            b = pow5mult(b, j);
                     }
              else
                     b = pow5mult(b, b5);
              }
       S = i2b(1);
       if (s5 > 0)
              S = pow5mult(S, s5);

       /* Check for special case that d is a normalized power of 2. */

       spec_case = 0;
       if ((mode < 2 || leftright)
#ifdef Honor_FLT_ROUNDS
                     && rounding == 1
#endif
                            ) {
              if (!word1(d) && !(word0(d) & Bndry_mask)
#ifndef Sudden_Underflow
               && word0(d) & (Exp_mask & ~Exp_msk1)
#endif
                            ) {
                     /* The special case */
                     b2 += Log2P;
                     s2 += Log2P;
                     spec_case = 1;
                     }
              }

       /* Arrange for convenient computation of quotients:
        * shift left if necessary so divisor has 4 leading 0 bits.
        *
        * Perhaps we should just compute leading 28 bits of S once
        * and for all and pass them and a shift to quorem, so it
        * can do shifts and ors to compute the numerator for q.
        */
#ifdef Pack_32
       if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f)
              i = 32 - i;
#else
       if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf)
              i = 16 - i;
#endif
       if (i > 4) {
              i -= 4;
              b2 += i;
              m2 += i;
              s2 += i;
              }
       else if (i < 4) {
              i += 28;
              b2 += i;
              m2 += i;
              s2 += i;
              }
       if (b2 > 0)
              b = lshift(b, b2);
       if (s2 > 0)
              S = lshift(S, s2);
       if (k_check) {
              if (cmp(b,S) < 0) {
                     k--;
                     b = multadd(b, 10, 0);      /* we botched the k estimate */
                     if (leftright)
                            mhi = multadd(mhi, 10, 0);
                     ilim = ilim1;
                     }
              }
       if (ilim <= 0 && (mode == 3 || mode == 5)) {
              if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
                     /* no digits, fcvt style */
 no_digits:
                     k = -1 - ndigits;
                     goto ret;
                     }
 one_digit:
              *s++ = '1';
              k++;
              goto ret;
              }
       if (leftright) {
              if (m2 > 0)
                     mhi = lshift(mhi, m2);

              /* Compute mlo -- check for special case
               * that d is a normalized power of 2.
               */

              mlo = mhi;
              if (spec_case) {
                     mhi = Balloc(mhi->k);
                     Bcopy(mhi, mlo);
                     mhi = lshift(mhi, Log2P);
                     }

              for(i = 1;;i++) {
                     dig = quorem(b,S) + '0';
                     /* Do we yet have the shortest decimal string
                      * that will round to d?
                      */
                     j = cmp(b, mlo);
                     delta = diff(S, mhi);
                     j1 = delta->sign ? 1 : cmp(b, delta);
                     Bfree(delta);
#ifndef ROUND_BIASED
                     if (j1 == 0 && mode != 1 && !(word1(d) & 1)
#ifdef Honor_FLT_ROUNDS
                            && rounding >= 1
#endif
                                                           ) {
                            if (dig == '9')
                                   goto round_9_up;
                            if (j > 0)
                                   dig++;
#ifdef SET_INEXACT
                            else if (!b->x[0] && b->wds <= 1)
                                   inexact = 0;
#endif
                            *s++ = dig;
                            goto ret;
                            }
#endif
                     if (j < 0 || j == 0 && mode != 1
#ifndef ROUND_BIASED
                                                 && !(word1(d) & 1)
#endif
                                   ) {
                            if (!b->x[0] && b->wds <= 1) {
#ifdef SET_INEXACT
                                   inexact = 0;
#endif
                                   goto accept_dig;
                                   }
#ifdef Honor_FLT_ROUNDS
                            if (mode > 1)
                             switch(rounding) {
                              case 0: goto accept_dig;
                              case 2: goto keep_dig;
                              }
#endif /*Honor_FLT_ROUNDS*/
                            if (j1 > 0) {
                                   b = lshift(b, 1);
                                   j1 = cmp(b, S);
                                   if ((j1 > 0 || j1 == 0 && dig & 1)
                                   && dig++ == '9')
                                          goto round_9_up;
                                   }
 accept_dig:
                            *s++ = dig;
                            goto ret;
                            }
                     if (j1 > 0) {
#ifdef Honor_FLT_ROUNDS
                            if (!rounding)
                                   goto accept_dig;
#endif
                            if (dig == '9') { /* possible if i == 1 */
 round_9_up:
                                   *s++ = '9';
                                   goto roundoff;
                                   }
                            *s++ = dig + 1;
                            goto ret;
                            }
#ifdef Honor_FLT_ROUNDS
 keep_dig:
#endif
                     *s++ = dig;
                     if (i == ilim)
                            break;
                     b = multadd(b, 10, 0);
                     if (mlo == mhi)
                            mlo = mhi = multadd(mhi, 10, 0);
                     else {
                            mlo = multadd(mlo, 10, 0);
                            mhi = multadd(mhi, 10, 0);
                            }
                     }
              }
       else
              for(i = 1;; i++) {
                     *s++ = dig = quorem(b,S) + '0';
                     if (!b->x[0] && b->wds <= 1) {
#ifdef SET_INEXACT
                            inexact = 0;
#endif
                            goto ret;
                            }
                     if (i >= ilim)
                            break;
                     b = multadd(b, 10, 0);
                     }

       /* Round off last digit */

#ifdef Honor_FLT_ROUNDS
       switch(rounding) {
         case 0: goto trimzeros;
         case 2: goto roundoff;
         }
#endif
       b = lshift(b, 1);
       j = cmp(b, S);
       if (j > 0 || j == 0 && dig & 1) {
 roundoff:
              while(*--s == '9')
                     if (s == s0) {
                            k++;
                            *s++ = '1';
                            goto ret;
                            }
              ++*s++;
              }
       else {
 trimzeros:
              while(*--s == '0');
              s++;
              }
 ret:
       Bfree(S);
       if (mhi) {
              if (mlo && mlo != mhi)
                     Bfree(mlo);
              Bfree(mhi);
              }
 ret1:
#ifdef SET_INEXACT
       if (inexact) {
              if (!oldinexact) {
                     word0(d) = Exp_1 + (70 << Exp_shift);
                     word1(d) = 0;
                     dval(d) += 1.;
                     }
              }
       else if (!oldinexact)
              clear_inexact();
#endif
       Bfree(b);
       *s = 0;
       *decpt = k + 1;
       if (rve)
              *rve = s;
       return s0;
       }

Here is the call graph for this function:

Here is the caller graph for this function:

void freedtoa ( char *  s)

Definition at line 2664 of file prdtoa.c.

{
       Bigint *b = (Bigint *)((int *)s - 1);
       b->maxwds = 1 << (b->k = *(int*)b);
       Bfree(b);
#ifndef MULTIPLE_THREADS
       if (s == dtoa_result)
              dtoa_result = 0;
#endif
       }

Here is the call graph for this function:

Here is the caller graph for this function:

static int hi0bits ( register ULong  x) [static]

Definition at line 733 of file prdtoa.c.

{
       register int k = 0;

       if (!(x & 0xffff0000)) {
              k = 16;
              x <<= 16;
              }
       if (!(x & 0xff000000)) {
              k += 8;
              x <<= 8;
              }
       if (!(x & 0xf0000000)) {
              k += 4;
              x <<= 4;
              }
       if (!(x & 0xc0000000)) {
              k += 2;
              x <<= 2;
              }
       if (!(x & 0x80000000)) {
              k++;
              if (!(x & 0x40000000))
                     return 32;
              }
       return k;
       }

Here is the caller graph for this function:

static Bigint* i2b ( int  i) [static]

Definition at line 815 of file prdtoa.c.

{
       Bigint *b;

       b = Balloc(1);
       b->x[0] = i;
       b->wds = 1;
       return b;
       }

Here is the call graph for this function:

Here is the caller graph for this function:

static int lo0bits ( ULong y) [static]

Definition at line 767 of file prdtoa.c.

{
       register int k;
       register ULong x = *y;

       if (x & 7) {
              if (x & 1)
                     return 0;
              if (x & 2) {
                     *y = x >> 1;
                     return 1;
                     }
              *y = x >> 2;
              return 2;
              }
       k = 0;
       if (!(x & 0xffff)) {
              k = 16;
              x >>= 16;
              }
       if (!(x & 0xff)) {
              k += 8;
              x >>= 8;
              }
       if (!(x & 0xf)) {
              k += 4;
              x >>= 4;
              }
       if (!(x & 0x3)) {
              k += 2;
              x >>= 2;
              }
       if (!(x & 1)) {
              k++;
              x >>= 1;
              if (!x)
                     return 32;
              }
       *y = x;
       return k;
       }

Here is the caller graph for this function:

static Bigint* lshift ( Bigint b,
int  k 
) [static]

Definition at line 1000 of file prdtoa.c.

{
       int i, k1, n, n1;
       Bigint *b1;
       ULong *x, *x1, *xe, z;

#ifdef Pack_32
       n = k >> 5;
#else
       n = k >> 4;
#endif
       k1 = b->k;
       n1 = n + b->wds + 1;
       for(i = b->maxwds; n1 > i; i <<= 1)
              k1++;
       b1 = Balloc(k1);
       x1 = b1->x;
       for(i = 0; i < n; i++)
              *x1++ = 0;
       x = b->x;
       xe = x + b->wds;
#ifdef Pack_32
       if (k &= 0x1f) {
              k1 = 32 - k;
              z = 0;
              do {
                     *x1++ = *x << k | z;
                     z = *x++ >> k1;
                     }
                     while(x < xe);
              if (*x1 = z)
                     ++n1;
              }
#else
       if (k &= 0xf) {
              k1 = 16 - k;
              z = 0;
              do {
                     *x1++ = *x << k  & 0xffff | z;
                     z = *x++ >> k1;
                     }
                     while(x < xe);
              if (*x1 = z)
                     ++n1;
              }
#endif
       else do
              *x1++ = *x++;
              while(x < xe);
       b1->wds = n1 - 1;
       Bfree(b);
       return b1;
       }

Here is the call graph for this function:

Here is the caller graph for this function:

static Bigint* mult ( Bigint a,
Bigint b 
) [static]

Definition at line 831 of file prdtoa.c.

{
       Bigint *c;
       int k, wa, wb, wc;
       ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
       ULong y;
#ifdef ULLong
       ULLong carry, z;
#else
       ULong carry, z;
#ifdef Pack_32
       ULong z2;
#endif
#endif

       if (a->wds < b->wds) {
              c = a;
              a = b;
              b = c;
              }
       k = a->k;
       wa = a->wds;
       wb = b->wds;
       wc = wa + wb;
       if (wc > a->maxwds)
              k++;
       c = Balloc(k);
       for(x = c->x, xa = x + wc; x < xa; x++)
              *x = 0;
       xa = a->x;
       xae = xa + wa;
       xb = b->x;
       xbe = xb + wb;
       xc0 = c->x;
#ifdef ULLong
       for(; xb < xbe; xc0++) {
              if (y = *xb++) {
                     x = xa;
                     xc = xc0;
                     carry = 0;
                     do {
                            z = *x++ * (ULLong)y + *xc + carry;
                            carry = z >> 32;
                            *xc++ = z & FFFFFFFF;
                            }
                            while(x < xae);
                     *xc = carry;
                     }
              }
#else
#ifdef Pack_32
       for(; xb < xbe; xb++, xc0++) {
              if (y = *xb & 0xffff) {
                     x = xa;
                     xc = xc0;
                     carry = 0;
                     do {
                            z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
                            carry = z >> 16;
                            z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
                            carry = z2 >> 16;
                            Storeinc(xc, z2, z);
                            }
                            while(x < xae);
                     *xc = carry;
                     }
              if (y = *xb >> 16) {
                     x = xa;
                     xc = xc0;
                     carry = 0;
                     z2 = *xc;
                     do {
                            z = (*x & 0xffff) * y + (*xc >> 16) + carry;
                            carry = z >> 16;
                            Storeinc(xc, z, z2);
                            z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
                            carry = z2 >> 16;
                            }
                            while(x < xae);
                     *xc = z2;
                     }
              }
#else
       for(; xb < xbe; xc0++) {
              if (y = *xb++) {
                     x = xa;
                     xc = xc0;
                     carry = 0;
                     do {
                            z = *x++ * y + *xc + carry;
                            carry = z >> 16;
                            *xc++ = z & 0xffff;
                            }
                            while(x < xae);
                     *xc = carry;
                     }
              }
#endif
#endif
       for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
       c->wds = wc;
       return c;
       }

Here is the call graph for this function:

Here is the caller graph for this function:

static Bigint* multadd ( Bigint b,
int  m,
int  a 
) [static]

Definition at line 638 of file prdtoa.c.

{
       int i, wds;
#ifdef ULLong
       ULong *x;
       ULLong carry, y;
#else
       ULong carry, *x, y;
#ifdef Pack_32
       ULong xi, z;
#endif
#endif
       Bigint *b1;

       wds = b->wds;
       x = b->x;
       i = 0;
       carry = a;
       do {
#ifdef ULLong
              y = *x * (ULLong)m + carry;
              carry = y >> 32;
              *x++ = y & FFFFFFFF;
#else
#ifdef Pack_32
              xi = *x;
              y = (xi & 0xffff) * m + carry;
              z = (xi >> 16) * m + (y >> 16);
              carry = z >> 16;
              *x++ = (z << 16) + (y & 0xffff);
#else
              y = *x * m + carry;
              carry = y >> 16;
              *x++ = y & 0xffff;
#endif
#endif
              }
              while(++i < wds);
       if (carry) {
              if (wds >= b->maxwds) {
                     b1 = Balloc(b->k+1);
                     Bcopy(b1, b);
                     Bfree(b);
                     b = b1;
                     }
              b->x[wds++] = carry;
              b->wds = wds;
              }
       return b;
       }

Here is the call graph for this function:

Here is the caller graph for this function:

static char* nrv_alloc ( char *  s,
char **  rve,
int  n 
) [static]

Definition at line 2642 of file prdtoa.c.

{
       char *rv, *t;

       t = rv = rv_alloc(n);
       while(*t = *s++) t++;
       if (rve)
              *rve = t;
       return rv;
       }

Here is the call graph for this function:

Here is the caller graph for this function:

static Bigint* pow5mult ( Bigint b,
int  k 
) [static]

Definition at line 943 of file prdtoa.c.

{
       Bigint *b1, *p5, *p51;
       int i;
       static int p05[3] = { 5, 25, 125 };

       if (i = k & 3)
              b = multadd(b, p05[i-1], 0);

       if (!(k >>= 2))
              return b;
       if (!(p5 = p5s)) {
              /* first time */
#ifdef MULTIPLE_THREADS
              ACQUIRE_DTOA_LOCK(1);
              if (!(p5 = p5s)) {
                     p5 = p5s = i2b(625);
                     p5->next = 0;
                     }
              FREE_DTOA_LOCK(1);
#else
              p5 = p5s = i2b(625);
              p5->next = 0;
#endif
              }
       for(;;) {
              if (k & 1) {
                     b1 = mult(b, p5);
                     Bfree(b);
                     b = b1;
                     }
              if (!(k >>= 1))
                     break;
              if (!(p51 = p5->next)) {
#ifdef MULTIPLE_THREADS
                     ACQUIRE_DTOA_LOCK(1);
                     if (!(p51 = p5->next)) {
                            p51 = p5->next = mult(p5,p5);
                            p51->next = 0;
                            }
                     FREE_DTOA_LOCK(1);
#else
                     p51 = p5->next = mult(p5,p5);
                     p51->next = 0;
#endif
                     }
              p5 = p51;
              }
       return b;
       }

Here is the call graph for this function:

Here is the caller graph for this function:

PR_cnvtf ( char *  buf,
int  bufsz,
int  prcsn,
double  fval 
)

Definition at line 3437 of file prdtoa.c.

{
    PRIntn decpt, sign, numdigits;
    char *num, *nump;
    char *bufp = buf;
    char *endnum;

    /* If anything fails, we store an empty string in 'buf' */
    num = (char*)PR_MALLOC(bufsz);
    if (num == NULL) {
        buf[0] = '\0';
        return;
    }
    /* XXX Why use mode 1? */
    if (PR_dtoa(dval(fval),1,prcsn,&decpt,&sign,&endnum,num,bufsz)
            == PR_FAILURE) {
        buf[0] = '\0';
        goto done;
    }
    numdigits = endnum - num;
    nump = num;

    if (sign &&
        !(word0(fval) == Sign_bit && word1(fval) == 0) &&
        !((word0(fval) & Exp_mask) == Exp_mask &&
          (word1(fval) || (word0(fval) & 0xfffff)))) {
        *bufp++ = '-';
    }

    if (decpt == 9999) {
        while ((*bufp++ = *nump++) != 0) {} /* nothing to execute */
        goto done;
    }

    if (decpt > (prcsn+1) || decpt < -(prcsn-1) || decpt < -5) {
        *bufp++ = *nump++;
        if (numdigits != 1) {
            *bufp++ = '.';
        }

        while (*nump != '\0') {
            *bufp++ = *nump++;
        }
        *bufp++ = 'e';
        PR_snprintf(bufp, bufsz - (bufp - buf), "%+d", decpt-1);
    } else if (decpt >= 0) {
        if (decpt == 0) {
            *bufp++ = '0';
        } else {
            while (decpt--) {
                if (*nump != '\0') {
                    *bufp++ = *nump++;
                } else {
                    *bufp++ = '0';
                }
            }
        }
        if (*nump != '\0') {
            *bufp++ = '.';
            while (*nump != '\0') {
                *bufp++ = *nump++;
            }
        }
        *bufp++ = '\0';
    } else if (decpt < 0) {
        *bufp++ = '0';
        *bufp++ = '.';
        while (decpt++) {
            *bufp++ = '0';
        }

        while (*nump != '\0') {
            *bufp++ = *nump++;
        }
        *bufp++ = '\0';
    }
done:
    PR_DELETE(num);
}

Here is the call graph for this function:

Here is the caller graph for this function:

PR_dtoa ( PRFloat64  d,
PRIntn  mode,
PRIntn  ndigits,
PRIntn *  decpt,
PRIntn *  sign,
char **  rve,
char *  buf,
PRSize  bufsize 
)

Definition at line 3393 of file prdtoa.c.

{
    char *result;
    PRSize resultlen;
    PRStatus rv = PR_FAILURE;

    if (!_pr_initialized) _PR_ImplicitInitialization();

    if (mode < 0 || mode > 3) {
        PR_SetError(PR_INVALID_ARGUMENT_ERROR, 0);
        return rv;
    }
    result = dtoa(d, mode, ndigits, decpt, sign, rve);
    if (!result) {
        PR_SetError(PR_OUT_OF_MEMORY_ERROR, 0);
        return rv;
    }
    resultlen = strlen(result)+1;
    if (bufsize < resultlen) {
        PR_SetError(PR_BUFFER_OVERFLOW_ERROR, 0);
    } else {
        memcpy(buf, result, resultlen);
        if (rve) {
            *rve = buf + (*rve - result);
        }
        rv = PR_SUCCESS;
    }
    freedtoa(result);
    return rv;  
}

Here is the call graph for this function:

Here is the caller graph for this function:

PR_strtod ( CONST char *  s00,
char **  se 
)

Definition at line 1606 of file prdtoa.c.

{
#ifdef Avoid_Underflow
       int scale;
#endif
       int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
               e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
       CONST char *s, *s0, *s1;
       double aadj, aadj1, adj, rv, rv0;
       Long L;
       ULong y, z;
       Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
#ifdef SET_INEXACT
       int inexact, oldinexact;
#endif
#ifdef Honor_FLT_ROUNDS
       int rounding;
#endif
#ifdef USE_LOCALE
       CONST char *s2;
#endif

       if (!_pr_initialized) _PR_ImplicitInitialization();

       sign = nz0 = nz = 0;
       dval(rv) = 0.;
       for(s = s00;;s++) switch(*s) {
              case '-':
                     sign = 1;
                     /* no break */
              case '+':
                     if (*++s)
                            goto break2;
                     /* no break */
              case 0:
                     goto ret0;
              case '\t':
              case '\n':
              case '\v':
              case '\f':
              case '\r':
              case ' ':
                     continue;
              default:
                     goto break2;
              }
 break2:
       if (*s == '0') {
              nz0 = 1;
              while(*++s == '0') ;
              if (!*s)
                     goto ret;
              }
       s0 = s;
       y = z = 0;
       for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
              if (nd < 9)
                     y = 10*y + c - '0';
              else if (nd < 16)
                     z = 10*z + c - '0';
       nd0 = nd;
#ifdef USE_LOCALE
       s1 = localeconv()->decimal_point;
       if (c == *s1) {
              c = '.';
              if (*++s1) {
                     s2 = s;
                     for(;;) {
                            if (*++s2 != *s1) {
                                   c = 0;
                                   break;
                                   }
                            if (!*++s1) {
                                   s = s2;
                                   break;
                                   }
                            }
                     }
              }
#endif
       if (c == '.') {
              c = *++s;
              if (!nd) {
                     for(; c == '0'; c = *++s)
                            nz++;
                     if (c > '0' && c <= '9') {
                            s0 = s;
                            nf += nz;
                            nz = 0;
                            goto have_dig;
                            }
                     goto dig_done;
                     }
              for(; c >= '0' && c <= '9'; c = *++s) {
 have_dig:
                     nz++;
                     if (c -= '0') {
                            nf += nz;
                            for(i = 1; i < nz; i++)
                                   if (nd++ < 9)
                                          y *= 10;
                                   else if (nd <= DBL_DIG + 1)
                                          z *= 10;
                            if (nd++ < 9)
                                   y = 10*y + c;
                            else if (nd <= DBL_DIG + 1)
                                   z = 10*z + c;
                            nz = 0;
                            }
                     }
              }
 dig_done:
       e = 0;
       if (c == 'e' || c == 'E') {
              if (!nd && !nz && !nz0) {
                     goto ret0;
                     }
              s00 = s;
              esign = 0;
              switch(c = *++s) {
                     case '-':
                            esign = 1;
                     case '+':
                            c = *++s;
                     }
              if (c >= '0' && c <= '9') {
                     while(c == '0')
                            c = *++s;
                     if (c > '0' && c <= '9') {
                            L = c - '0';
                            s1 = s;
                            while((c = *++s) >= '0' && c <= '9')
                                   L = 10*L + c - '0';
                            if (s - s1 > 8 || L > 19999)
                                   /* Avoid confusion from exponents
                                    * so large that e might overflow.
                                    */
                                   e = 19999; /* safe for 16 bit ints */
                            else
                                   e = (int)L;
                            if (esign)
                                   e = -e;
                            }
                     else
                            e = 0;
                     }
              else
                     s = s00;
              }
       if (!nd) {
              if (!nz && !nz0) {
#ifdef INFNAN_CHECK
                     /* Check for Nan and Infinity */
                     switch(c) {
                       case 'i':
                       case 'I':
                            if (match(&s,"nf")) {
                                   --s;
                                   if (!match(&s,"inity"))
                                          ++s;
                                   word0(rv) = 0x7ff00000;
                                   word1(rv) = 0;
                                   goto ret;
                                   }
                            break;
                       case 'n':
                       case 'N':
                            if (match(&s, "an")) {
                                   word0(rv) = NAN_WORD0;
                                   word1(rv) = NAN_WORD1;
#ifndef No_Hex_NaN
                                   if (*s == '(') /*)*/
                                          hexnan(&rv, &s);
#endif
                                   goto ret;
                                   }
                       }
#endif /* INFNAN_CHECK */
 ret0:
                     s = s00;
                     sign = 0;
                     }
              goto ret;
              }
       e1 = e -= nf;

       /* Now we have nd0 digits, starting at s0, followed by a
        * decimal point, followed by nd-nd0 digits.  The number we're
        * after is the integer represented by those digits times
        * 10**e */

       if (!nd0)
              nd0 = nd;
       k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
       dval(rv) = y;
       if (k > 9) {
#ifdef SET_INEXACT
              if (k > DBL_DIG)
                     oldinexact = get_inexact();
#endif
              dval(rv) = tens[k - 9] * dval(rv) + z;
              }
       bd0 = 0;
       if (nd <= DBL_DIG
#ifndef RND_PRODQUOT
#ifndef Honor_FLT_ROUNDS
              && Flt_Rounds == 1
#endif
#endif
                     ) {
              if (!e)
                     goto ret;
              if (e > 0) {
                     if (e <= Ten_pmax) {
#ifdef VAX
                            goto vax_ovfl_check;
#else
#ifdef Honor_FLT_ROUNDS
                            /* round correctly FLT_ROUNDS = 2 or 3 */
                            if (sign) {
                                   rv = -rv;
                                   sign = 0;
                                   }
#endif
                            /* rv = */ rounded_product(dval(rv), tens[e]);
                            goto ret;
#endif
                            }
                     i = DBL_DIG - nd;
                     if (e <= Ten_pmax + i) {
                            /* A fancier test would sometimes let us do
                             * this for larger i values.
                             */
#ifdef Honor_FLT_ROUNDS
                            /* round correctly FLT_ROUNDS = 2 or 3 */
                            if (sign) {
                                   rv = -rv;
                                   sign = 0;
                                   }
#endif
                            e -= i;
                            dval(rv) *= tens[i];
#ifdef VAX
                            /* VAX exponent range is so narrow we must
                             * worry about overflow here...
                             */
 vax_ovfl_check:
                            word0(rv) -= P*Exp_msk1;
                            /* rv = */ rounded_product(dval(rv), tens[e]);
                            if ((word0(rv) & Exp_mask)
                             > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
                                   goto ovfl;
                            word0(rv) += P*Exp_msk1;
#else
                            /* rv = */ rounded_product(dval(rv), tens[e]);
#endif
                            goto ret;
                            }
                     }
#ifndef Inaccurate_Divide
              else if (e >= -Ten_pmax) {
#ifdef Honor_FLT_ROUNDS
                     /* round correctly FLT_ROUNDS = 2 or 3 */
                     if (sign) {
                            rv = -rv;
                            sign = 0;
                            }
#endif
                     /* rv = */ rounded_quotient(dval(rv), tens[-e]);
                     goto ret;
                     }
#endif
              }
       e1 += nd - k;

#ifdef IEEE_Arith
#ifdef SET_INEXACT
       inexact = 1;
       if (k <= DBL_DIG)
              oldinexact = get_inexact();
#endif
#ifdef Avoid_Underflow
       scale = 0;
#endif
#ifdef Honor_FLT_ROUNDS
       if ((rounding = Flt_Rounds) >= 2) {
              if (sign)
                     rounding = rounding == 2 ? 0 : 2;
              else
                     if (rounding != 2)
                            rounding = 0;
              }
#endif
#endif /*IEEE_Arith*/

       /* Get starting approximation = rv * 10**e1 */

       if (e1 > 0) {
              if (i = e1 & 15)
                     dval(rv) *= tens[i];
              if (e1 &= ~15) {
                     if (e1 > DBL_MAX_10_EXP) {
 ovfl:
#ifndef NO_ERRNO
                            PR_SetError(PR_RANGE_ERROR, 0);
#endif
                            /* Can't trust HUGE_VAL */
#ifdef IEEE_Arith
#ifdef Honor_FLT_ROUNDS
                            switch(rounding) {
                              case 0: /* toward 0 */
                              case 3: /* toward -infinity */
                                   word0(rv) = Big0;
                                   word1(rv) = Big1;
                                   break;
                              default:
                                   word0(rv) = Exp_mask;
                                   word1(rv) = 0;
                              }
#else /*Honor_FLT_ROUNDS*/
                            word0(rv) = Exp_mask;
                            word1(rv) = 0;
#endif /*Honor_FLT_ROUNDS*/
#ifdef SET_INEXACT
                            /* set overflow bit */
                            dval(rv0) = 1e300;
                            dval(rv0) *= dval(rv0);
#endif
#else /*IEEE_Arith*/
                            word0(rv) = Big0;
                            word1(rv) = Big1;
#endif /*IEEE_Arith*/
                            if (bd0)
                                   goto retfree;
                            goto ret;
                            }
                     e1 >>= 4;
                     for(j = 0; e1 > 1; j++, e1 >>= 1)
                            if (e1 & 1)
                                   dval(rv) *= bigtens[j];
              /* The last multiplication could overflow. */
                     word0(rv) -= P*Exp_msk1;
                     dval(rv) *= bigtens[j];
                     if ((z = word0(rv) & Exp_mask)
                      > Exp_msk1*(DBL_MAX_EXP+Bias-P))
                            goto ovfl;
                     if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
                            /* set to largest number */
                            /* (Can't trust DBL_MAX) */
                            word0(rv) = Big0;
                            word1(rv) = Big1;
                            }
                     else
                            word0(rv) += P*Exp_msk1;
                     }
              }
       else if (e1 < 0) {
              e1 = -e1;
              if (i = e1 & 15)
                     dval(rv) /= tens[i];
              if (e1 >>= 4) {
                     if (e1 >= 1 << n_bigtens)
                            goto undfl;
#ifdef Avoid_Underflow
                     if (e1 & Scale_Bit)
                            scale = 2*P;
                     for(j = 0; e1 > 0; j++, e1 >>= 1)
                            if (e1 & 1)
                                   dval(rv) *= tinytens[j];
                     if (scale && (j = 2*P + 1 - ((word0(rv) & Exp_mask)
                                          >> Exp_shift)) > 0) {
                            /* scaled rv is denormal; zap j low bits */
                            if (j >= 32) {
                                   word1(rv) = 0;
                                   if (j >= 53)
                                    word0(rv) = (P+2)*Exp_msk1;
                                   else
                                    word0(rv) &= 0xffffffff << j-32;
                                   }
                            else
                                   word1(rv) &= 0xffffffff << j;
                            }
#else
                     for(j = 0; e1 > 1; j++, e1 >>= 1)
                            if (e1 & 1)
                                   dval(rv) *= tinytens[j];
                     /* The last multiplication could underflow. */
                     dval(rv0) = dval(rv);
                     dval(rv) *= tinytens[j];
                     if (!dval(rv)) {
                            dval(rv) = 2.*dval(rv0);
                            dval(rv) *= tinytens[j];
#endif
                            if (!dval(rv)) {
 undfl:
                                   dval(rv) = 0.;
#ifndef NO_ERRNO
                                   PR_SetError(PR_RANGE_ERROR, 0);
#endif
                                   if (bd0)
                                          goto retfree;
                                   goto ret;
                                   }
#ifndef Avoid_Underflow
                            word0(rv) = Tiny0;
                            word1(rv) = Tiny1;
                            /* The refinement below will clean
                             * this approximation up.
                             */
                            }
#endif
                     }
              }

       /* Now the hard part -- adjusting rv to the correct value.*/

       /* Put digits into bd: true value = bd * 10^e */

       bd0 = s2b(s0, nd0, nd, y);

       for(;;) {
              bd = Balloc(bd0->k);
              Bcopy(bd, bd0);
              bb = d2b(dval(rv), &bbe, &bbbits); /* rv = bb * 2^bbe */
              bs = i2b(1);

              if (e >= 0) {
                     bb2 = bb5 = 0;
                     bd2 = bd5 = e;
                     }
              else {
                     bb2 = bb5 = -e;
                     bd2 = bd5 = 0;
                     }
              if (bbe >= 0)
                     bb2 += bbe;
              else
                     bd2 -= bbe;
              bs2 = bb2;
#ifdef Honor_FLT_ROUNDS
              if (rounding != 1)
                     bs2++;
#endif
#ifdef Avoid_Underflow
              j = bbe - scale;
              i = j + bbbits - 1;  /* logb(rv) */
              if (i < Emin) /* denormal */
                     j += P - Emin;
              else
                     j = P + 1 - bbbits;
#else /*Avoid_Underflow*/
#ifdef Sudden_Underflow
#ifdef IBM
              j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
#else
              j = P + 1 - bbbits;
#endif
#else /*Sudden_Underflow*/
              j = bbe;
              i = j + bbbits - 1;  /* logb(rv) */
              if (i < Emin) /* denormal */
                     j += P - Emin;
              else
                     j = P + 1 - bbbits;
#endif /*Sudden_Underflow*/
#endif /*Avoid_Underflow*/
              bb2 += j;
              bd2 += j;
#ifdef Avoid_Underflow
              bd2 += scale;
#endif
              i = bb2 < bd2 ? bb2 : bd2;
              if (i > bs2)
                     i = bs2;
              if (i > 0) {
                     bb2 -= i;
                     bd2 -= i;
                     bs2 -= i;
                     }
              if (bb5 > 0) {
                     bs = pow5mult(bs, bb5);
                     bb1 = mult(bs, bb);
                     Bfree(bb);
                     bb = bb1;
                     }
              if (bb2 > 0)
                     bb = lshift(bb, bb2);
              if (bd5 > 0)
                     bd = pow5mult(bd, bd5);
              if (bd2 > 0)
                     bd = lshift(bd, bd2);
              if (bs2 > 0)
                     bs = lshift(bs, bs2);
              delta = diff(bb, bd);
              dsign = delta->sign;
              delta->sign = 0;
              i = cmp(delta, bs);
#ifdef Honor_FLT_ROUNDS
              if (rounding != 1) {
                     if (i < 0) {
                            /* Error is less than an ulp */
                            if (!delta->x[0] && delta->wds <= 1) {
                                   /* exact */
#ifdef SET_INEXACT
                                   inexact = 0;
#endif
                                   break;
                                   }
                            if (rounding) {
                                   if (dsign) {
                                          adj = 1.;
                                          goto apply_adj;
                                          }
                                   }
                            else if (!dsign) {
                                   adj = -1.;
                                   if (!word1(rv)
                                    && !(word0(rv) & Frac_mask)) {
                                          y = word0(rv) & Exp_mask;
#ifdef Avoid_Underflow
                                          if (!scale || y > 2*P*Exp_msk1)
#else
                                          if (y)
#endif
                                            {
                                            delta = lshift(delta,Log2P);
                                            if (cmp(delta, bs) <= 0)
                                                 adj = -0.5;
                                            }
                                          }
 apply_adj:
#ifdef Avoid_Underflow
                                   if (scale && (y = word0(rv) & Exp_mask)
                                          <= 2*P*Exp_msk1)
                                     word0(adj) += (2*P+1)*Exp_msk1 - y;
#else
#ifdef Sudden_Underflow
                                   if ((word0(rv) & Exp_mask) <=
                                                 P*Exp_msk1) {
                                          word0(rv) += P*Exp_msk1;
                                          dval(rv) += adj*ulp(dval(rv));
                                          word0(rv) -= P*Exp_msk1;
                                          }
                                   else
#endif /*Sudden_Underflow*/
#endif /*Avoid_Underflow*/
                                   dval(rv) += adj*ulp(dval(rv));
                                   }
                            break;
                            }
                     adj = ratio(delta, bs);
                     if (adj < 1.)
                            adj = 1.;
                     if (adj <= 0x7ffffffe) {
                            /* adj = rounding ? ceil(adj) : floor(adj); */
                            y = adj;
                            if (y != adj) {
                                   if (!((rounding>>1) ^ dsign))
                                          y++;
                                   adj = y;
                                   }
                            }
#ifdef Avoid_Underflow
                     if (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1)
                            word0(adj) += (2*P+1)*Exp_msk1 - y;
#else
#ifdef Sudden_Underflow
                     if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
                            word0(rv) += P*Exp_msk1;
                            adj *= ulp(dval(rv));
                            if (dsign)
                                   dval(rv) += adj;
                            else
                                   dval(rv) -= adj;
                            word0(rv) -= P*Exp_msk1;
                            goto cont;
                            }
#endif /*Sudden_Underflow*/
#endif /*Avoid_Underflow*/
                     adj *= ulp(dval(rv));
                     if (dsign)
                            dval(rv) += adj;
                     else
                            dval(rv) -= adj;
                     goto cont;
                     }
#endif /*Honor_FLT_ROUNDS*/

              if (i < 0) {
                     /* Error is less than half an ulp -- check for
                      * special case of mantissa a power of two.
                      */
                     if (dsign || word1(rv) || word0(rv) & Bndry_mask
#ifdef IEEE_Arith
#ifdef Avoid_Underflow
                      || (word0(rv) & Exp_mask) <= (2*P+1)*Exp_msk1
#else
                      || (word0(rv) & Exp_mask) <= Exp_msk1
#endif
#endif
                            ) {
#ifdef SET_INEXACT
                            if (!delta->x[0] && delta->wds <= 1)
                                   inexact = 0;
#endif
                            break;
                            }
                     if (!delta->x[0] && delta->wds <= 1) {
                            /* exact result */
#ifdef SET_INEXACT
                            inexact = 0;
#endif
                            break;
                            }
                     delta = lshift(delta,Log2P);
                     if (cmp(delta, bs) > 0)
                            goto drop_down;
                     break;
                     }
              if (i == 0) {
                     /* exactly half-way between */
                     if (dsign) {
                            if ((word0(rv) & Bndry_mask1) == Bndry_mask1
                             &&  word1(rv) == (
#ifdef Avoid_Underflow
                     (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1)
              ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
#endif
                                             0xffffffff)) {
                                   /*boundary case -- increment exponent*/
                                   word0(rv) = (word0(rv) & Exp_mask)
                                          + Exp_msk1
#ifdef IBM
                                          | Exp_msk1 >> 4
#endif
                                          ;
                                   word1(rv) = 0;
#ifdef Avoid_Underflow
                                   dsign = 0;
#endif
                                   break;
                                   }
                            }
                     else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
 drop_down:
                            /* boundary case -- decrement exponent */
#ifdef Sudden_Underflow /*{{*/
                            L = word0(rv) & Exp_mask;
#ifdef IBM
                            if (L <  Exp_msk1)
#else
#ifdef Avoid_Underflow
                            if (L <= (scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
#else
                            if (L <= Exp_msk1)
#endif /*Avoid_Underflow*/
#endif /*IBM*/
                                   goto undfl;
                            L -= Exp_msk1;
#else /*Sudden_Underflow}{*/
#ifdef Avoid_Underflow
                            if (scale) {
                                   L = word0(rv) & Exp_mask;
                                   if (L <= (2*P+1)*Exp_msk1) {
                                          if (L > (P+2)*Exp_msk1)
                                                 /* round even ==> */
                                                 /* accept rv */
                                                 break;
                                          /* rv = smallest denormal */
                                          goto undfl;
                                          }
                                   }
#endif /*Avoid_Underflow*/
                            L = (word0(rv) & Exp_mask) - Exp_msk1;
#endif /*Sudden_Underflow}}*/
                            word0(rv) = L | Bndry_mask1;
                            word1(rv) = 0xffffffff;
#ifdef IBM
                            goto cont;
#else
                            break;
#endif
                            }
#ifndef ROUND_BIASED
                     if (!(word1(rv) & LSB))
                            break;
#endif
                     if (dsign)
                            dval(rv) += ulp(dval(rv));
#ifndef ROUND_BIASED
                     else {
                            dval(rv) -= ulp(dval(rv));
#ifndef Sudden_Underflow
                            if (!dval(rv))
                                   goto undfl;
#endif
                            }
#ifdef Avoid_Underflow
                     dsign = 1 - dsign;
#endif
#endif
                     break;
                     }
              if ((aadj = ratio(delta, bs)) <= 2.) {
                     if (dsign)
                            aadj = aadj1 = 1.;
                     else if (word1(rv) || word0(rv) & Bndry_mask) {
#ifndef Sudden_Underflow
                            if (word1(rv) == Tiny1 && !word0(rv))
                                   goto undfl;
#endif
                            aadj = 1.;
                            aadj1 = -1.;
                            }
                     else {
                            /* special case -- power of FLT_RADIX to be */
                            /* rounded down... */

                            if (aadj < 2./FLT_RADIX)
                                   aadj = 1./FLT_RADIX;
                            else
                                   aadj *= 0.5;
                            aadj1 = -aadj;
                            }
                     }
              else {
                     aadj *= 0.5;
                     aadj1 = dsign ? aadj : -aadj;
#ifdef Check_FLT_ROUNDS
                     switch(Rounding) {
                            case 2: /* towards +infinity */
                                   aadj1 -= 0.5;
                                   break;
                            case 0: /* towards 0 */
                            case 3: /* towards -infinity */
                                   aadj1 += 0.5;
                            }
#else
                     if (Flt_Rounds == 0)
                            aadj1 += 0.5;
#endif /*Check_FLT_ROUNDS*/
                     }
              y = word0(rv) & Exp_mask;

              /* Check for overflow */

              if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
                     dval(rv0) = dval(rv);
                     word0(rv) -= P*Exp_msk1;
                     adj = aadj1 * ulp(dval(rv));
                     dval(rv) += adj;
                     if ((word0(rv) & Exp_mask) >=
                                   Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
                            if (word0(rv0) == Big0 && word1(rv0) == Big1)
                                   goto ovfl;
                            word0(rv) = Big0;
                            word1(rv) = Big1;
                            goto cont;
                            }
                     else
                            word0(rv) += P*Exp_msk1;
                     }
              else {
#ifdef Avoid_Underflow
                     if (scale && y <= 2*P*Exp_msk1) {
                            if (aadj <= 0x7fffffff) {
                                   if ((z = aadj) <= 0)
                                          z = 1;
                                   aadj = z;
                                   aadj1 = dsign ? aadj : -aadj;
                                   }
                            word0(aadj1) += (2*P+1)*Exp_msk1 - y;
                            }
                     adj = aadj1 * ulp(dval(rv));
                     dval(rv) += adj;
#else
#ifdef Sudden_Underflow
                     if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
                            dval(rv0) = dval(rv);
                            word0(rv) += P*Exp_msk1;
                            adj = aadj1 * ulp(dval(rv));
                            dval(rv) += adj;
#ifdef IBM
                            if ((word0(rv) & Exp_mask) <  P*Exp_msk1)
#else
                            if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
#endif
                                   {
                                   if (word0(rv0) == Tiny0
                                    && word1(rv0) == Tiny1)
                                          goto undfl;
                                   word0(rv) = Tiny0;
                                   word1(rv) = Tiny1;
                                   goto cont;
                                   }
                            else
                                   word0(rv) -= P*Exp_msk1;
                            }
                     else {
                            adj = aadj1 * ulp(dval(rv));
                            dval(rv) += adj;
                            }
#else /*Sudden_Underflow*/
                     /* Compute adj so that the IEEE rounding rules will
                      * correctly round rv + adj in some half-way cases.
                      * If rv * ulp(rv) is denormalized (i.e.,
                      * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
                      * trouble from bits lost to denormalization;
                      * example: 1.2e-307 .
                      */
                     if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
                            aadj1 = (double)(int)(aadj + 0.5);
                            if (!dsign)
                                   aadj1 = -aadj1;
                            }
                     adj = aadj1 * ulp(dval(rv));
                     dval(rv) += adj;
#endif /*Sudden_Underflow*/
#endif /*Avoid_Underflow*/
                     }
              z = word0(rv) & Exp_mask;
#ifndef SET_INEXACT
#ifdef Avoid_Underflow
              if (!scale)
#endif
              if (y == z) {
                     /* Can we stop now? */
                     L = (Long)aadj;
                     aadj -= L;
                     /* The tolerances below are conservative. */
                     if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
                            if (aadj < .4999999 || aadj > .5000001)
                                   break;
                            }
                     else if (aadj < .4999999/FLT_RADIX)
                            break;
                     }
#endif
 cont:
              Bfree(bb);
              Bfree(bd);
              Bfree(bs);
              Bfree(delta);
              }
#ifdef SET_INEXACT
       if (inexact) {
              if (!oldinexact) {
                     word0(rv0) = Exp_1 + (70 << Exp_shift);
                     word1(rv0) = 0;
                     dval(rv0) += 1.;
                     }
              }
       else if (!oldinexact)
              clear_inexact();
#endif
#ifdef Avoid_Underflow
       if (scale) {
              word0(rv0) = Exp_1 - 2*P*Exp_msk1;
              word1(rv0) = 0;
              dval(rv) *= dval(rv0);
#ifndef NO_ERRNO
              /* try to avoid the bug of testing an 8087 register value */
              if (word0(rv) == 0 && word1(rv) == 0)
                     PR_SetError(PR_RANGE_ERROR, 0);
#endif
              }
#endif /* Avoid_Underflow */
#ifdef SET_INEXACT
       if (inexact && !(word0(rv) & Exp_mask)) {
              /* set underflow bit */
              dval(rv0) = 1e-300;
              dval(rv0) *= dval(rv0);
              }
#endif
 retfree:
       Bfree(bb);
       Bfree(bd);
       Bfree(bs);
       Bfree(bd0);
       Bfree(delta);
 ret:
       if (se)
              *se = (char *)s;
       return sign ? -dval(rv) : dval(rv);
       }

Here is the call graph for this function:

static int quorem ( Bigint b,
Bigint S 
) [static]

Definition at line 2498 of file prdtoa.c.

{
       int n;
       ULong *bx, *bxe, q, *sx, *sxe;
#ifdef ULLong
       ULLong borrow, carry, y, ys;
#else
       ULong borrow, carry, y, ys;
#ifdef Pack_32
       ULong si, z, zs;
#endif
#endif

       n = S->wds;
#ifdef DEBUG
       /*debug*/ if (b->wds > n)
       /*debug*/     Bug("oversize b in quorem");
#endif
       if (b->wds < n)
              return 0;
       sx = S->x;
       sxe = sx + --n;
       bx = b->x;
       bxe = bx + n;
       q = *bxe / (*sxe + 1);      /* ensure q <= true quotient */
#ifdef DEBUG
       /*debug*/ if (q > 9)
       /*debug*/     Bug("oversized quotient in quorem");
#endif
       if (q) {
              borrow = 0;
              carry = 0;
              do {
#ifdef ULLong
                     ys = *sx++ * (ULLong)q + carry;
                     carry = ys >> 32;
                     y = *bx - (ys & FFFFFFFF) - borrow;
                     borrow = y >> 32 & (ULong)1;
                     *bx++ = y & FFFFFFFF;
#else
#ifdef Pack_32
                     si = *sx++;
                     ys = (si & 0xffff) * q + carry;
                     zs = (si >> 16) * q + (ys >> 16);
                     carry = zs >> 16;
                     y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
                     borrow = (y & 0x10000) >> 16;
                     z = (*bx >> 16) - (zs & 0xffff) - borrow;
                     borrow = (z & 0x10000) >> 16;
                     Storeinc(bx, z, y);
#else
                     ys = *sx++ * q + carry;
                     carry = ys >> 16;
                     y = *bx - (ys & 0xffff) - borrow;
                     borrow = (y & 0x10000) >> 16;
                     *bx++ = y & 0xffff;
#endif
#endif
                     }
                     while(sx <= sxe);
              if (!*bxe) {
                     bx = b->x;
                     while(--bxe > bx && !*bxe)
                            --n;
                     b->wds = n;
                     }
              }
       if (cmp(b, S) >= 0) {
              q++;
              borrow = 0;
              carry = 0;
              bx = b->x;
              sx = S->x;
              do {
#ifdef ULLong
                     ys = *sx++ + carry;
                     carry = ys >> 32;
                     y = *bx - (ys & FFFFFFFF) - borrow;
                     borrow = y >> 32 & (ULong)1;
                     *bx++ = y & FFFFFFFF;
#else
#ifdef Pack_32
                     si = *sx++;
                     ys = (si & 0xffff) + carry;
                     zs = (si >> 16) + (ys >> 16);
                     carry = zs >> 16;
                     y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
                     borrow = (y & 0x10000) >> 16;
                     z = (*bx >> 16) - (zs & 0xffff) - borrow;
                     borrow = (z & 0x10000) >> 16;
                     Storeinc(bx, z, y);
#else
                     ys = *sx++ + carry;
                     carry = ys >> 16;
                     y = *bx - (ys & 0xffff) - borrow;
                     borrow = (y & 0x10000) >> 16;
                     *bx++ = y & 0xffff;
#endif
#endif
                     }
                     while(sx <= sxe);
              bx = b->x;
              bxe = bx + n;
              if (!*bxe) {
                     while(--bxe > bx && !*bxe)
                            --n;
                     b->wds = n;
                     }
              }
       return q;
       }

Here is the caller graph for this function:

static double ratio ( Bigint a,
Bigint b 
) [static]

Definition at line 1438 of file prdtoa.c.

{
       double da, db;
       int k, ka, kb;

       dval(da) = b2d(a, &ka);
       dval(db) = b2d(b, &kb);
#ifdef Pack_32
       k = ka - kb + 32*(a->wds - b->wds);
#else
       k = ka - kb + 16*(a->wds - b->wds);
#endif
#ifdef IBM
       if (k > 0) {
              word0(da) += (k >> 2)*Exp_msk1;
              if (k &= 3)
                     dval(da) *= 1 << k;
              }
       else {
              k = -k;
              word0(db) += (k >> 2)*Exp_msk1;
              if (k &= 3)
                     dval(db) *= 1 << k;
              }
#else
       if (k > 0)
              word0(da) += k*Exp_msk1;
       else {
              k = -k;
              word0(db) += k*Exp_msk1;
              }
#endif
       return dval(da) / dval(db);
       }

Here is the call graph for this function:

Here is the caller graph for this function:

static char* rv_alloc ( int  i) [static]

Definition at line 2619 of file prdtoa.c.

{
       int j, k, *r;

       j = sizeof(ULong);
       for(k = 0;
              sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= i;
              j <<= 1)
                     k++;
       r = (int*)Balloc(k);
       *r = k;
       return
#ifndef MULTIPLE_THREADS
       dtoa_result =
#endif
              (char *)(r+1);
       }

Here is the call graph for this function:

Here is the caller graph for this function:

static Bigint* s2b ( CONST char *  s,
int  nd0,
int  nd,
ULong  y9 
) [static]

Definition at line 695 of file prdtoa.c.

{
       Bigint *b;
       int i, k;
       Long x, y;

       x = (nd + 8) / 9;
       for(k = 0, y = 1; x > y; y <<= 1, k++) ;
#ifdef Pack_32
       b = Balloc(k);
       b->x[0] = y9;
       b->wds = 1;
#else
       b = Balloc(k+1);
       b->x[0] = y9 & 0xffff;
       b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
#endif

       i = 9;
       if (9 < nd0) {
              s += 9;
              do b = multadd(b, 10, *s++ - '0');
                     while(++i < nd0);
              s++;
              }
       else
              s += 10;
       for(; i < nd; i++)
              b = multadd(b, 10, *s++ - '0');
       return b;
       }

Here is the call graph for this function:

Here is the caller graph for this function:

static double ulp ( double  x) [static]

Definition at line 1188 of file prdtoa.c.

{
       register Long L;
       double a;

       L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
#ifndef Avoid_Underflow
#ifndef Sudden_Underflow
       if (L > 0) {
#endif
#endif
#ifdef IBM
              L |= Exp_msk1 >> 4;
#endif
              word0(a) = L;
              word1(a) = 0;
#ifndef Avoid_Underflow
#ifndef Sudden_Underflow
              }
       else {
              L = -L >> Exp_shift;
              if (L < Exp_shift) {
                     word0(a) = 0x80000 >> L;
                     word1(a) = 0;
                     }
              else {
                     word0(a) = 0;
                     L -= Exp_shift;
                     word1(a) = L >= 31 ? 1 : 1 << 31 - L;
                     }
              }
#endif
#endif
       return dval(a);
       }

Here is the caller graph for this function:


Variable Documentation

CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 } [static]

Definition at line 1486 of file prdtoa.c.

PRLock* dtoa_lock[2] [static]

Definition at line 44 of file prdtoa.c.

Bigint* freelist[Kmax+1] [static]

Definition at line 572 of file prdtoa.c.

Bigint* p5s [static]

Definition at line 936 of file prdtoa.c.

double * pmem_next = private_mem [static]

Definition at line 277 of file prdtoa.c.

double private_mem[PRIVATE_mem] [static]

Definition at line 277 of file prdtoa.c.

CONST double tens[] [static]
Initial value:
 {
              1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
              1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
              1e20, 1e21, 1e22



              }

Definition at line 1475 of file prdtoa.c.

CONST double tinytens[] [static]
Initial value:
 { 1e-16, 1e-32, 1e-64, 1e-128,

              9007199254740992.*9007199254740992.e-256
              



              }

Definition at line 1487 of file prdtoa.c.