Back to index

lightning-sunbird  0.9+nobinonly
Functions
ecp_384.c File Reference
#include "ecp.h"
#include "mpi.h"
#include "mplogic.h"
#include "mpi-priv.h"
#include <stdlib.h>

Go to the source code of this file.

Functions

mp_err ec_GFp_nistp384_mod (const mp_int *a, mp_int *r, const GFMethod *meth)
mp_err ec_GFp_nistp384_sqr (const mp_int *a, mp_int *r, const GFMethod *meth)
mp_err ec_GFp_nistp384_mul (const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth)
mp_err ec_group_set_gfp384 (ECGroup *group, ECCurveName name)

Function Documentation

mp_err ec_GFp_nistp384_mod ( const mp_int a,
mp_int r,
const GFMethod *  meth 
)

Definition at line 49 of file ecp_384.c.

{
       mp_err res = MP_OKAY;
       int a_bits = mpl_significant_bits(a);
       int i;

       /* m1, m2 are statically-allocated mp_int of exactly the size we need */
       mp_int m[10];

#ifdef ECL_THIRTY_TWO_BIT
       mp_digit s[10][12];
       for (i = 0; i < 10; i++) {
              MP_SIGN(&m[i]) = MP_ZPOS;
              MP_ALLOC(&m[i]) = 12;
              MP_USED(&m[i]) = 12;
              MP_DIGITS(&m[i]) = s[i];
       }
#else
       mp_digit s[10][6];
       for (i = 0; i < 10; i++) {
              MP_SIGN(&m[i]) = MP_ZPOS;
              MP_ALLOC(&m[i]) = 6;
              MP_USED(&m[i]) = 6;
              MP_DIGITS(&m[i]) = s[i];
       }
#endif

#ifdef ECL_THIRTY_TWO_BIT
       /* for polynomials larger than twice the field size or polynomials 
        * not using all words, use regular reduction */
       if ((a_bits > 768) || (a_bits <= 736)) {
              MP_CHECKOK(mp_mod(a, &meth->irr, r));
       } else {
              for (i = 0; i < 12; i++) {
                     s[0][i] = MP_DIGIT(a, i);
              }
              s[1][0] = 0;
              s[1][1] = 0;
              s[1][2] = 0;
              s[1][3] = 0;
              s[1][4] = MP_DIGIT(a, 21);
              s[1][5] = MP_DIGIT(a, 22);
              s[1][6] = MP_DIGIT(a, 23);
              s[1][7] = 0;
              s[1][8] = 0;
              s[1][9] = 0;
              s[1][10] = 0;
              s[1][11] = 0;
              for (i = 0; i < 12; i++) {
                     s[2][i] = MP_DIGIT(a, i+12);
              }
              s[3][0] = MP_DIGIT(a, 21);
              s[3][1] = MP_DIGIT(a, 22);
              s[3][2] = MP_DIGIT(a, 23);
              for (i = 3; i < 12; i++) {
                     s[3][i] = MP_DIGIT(a, i+9);
              }
              s[4][0] = 0;
              s[4][1] = MP_DIGIT(a, 23);
              s[4][2] = 0;
              s[4][3] = MP_DIGIT(a, 20);
              for (i = 4; i < 12; i++) {
                     s[4][i] = MP_DIGIT(a, i+8);
              }
              s[5][0] = 0;
              s[5][1] = 0;
              s[5][2] = 0;
              s[5][3] = 0;
              s[5][4] = MP_DIGIT(a, 20);
              s[5][5] = MP_DIGIT(a, 21);
              s[5][6] = MP_DIGIT(a, 22);
              s[5][7] = MP_DIGIT(a, 23);
              s[5][8] = 0;
              s[5][9] = 0;
              s[5][10] = 0;
              s[5][11] = 0;
              s[6][0] = MP_DIGIT(a, 20);
              s[6][1] = 0;
              s[6][2] = 0;
              s[6][3] = MP_DIGIT(a, 21);
              s[6][4] = MP_DIGIT(a, 22);
              s[6][5] = MP_DIGIT(a, 23);
              s[6][6] = 0;
              s[6][7] = 0;
              s[6][8] = 0;
              s[6][9] = 0;
              s[6][10] = 0;
              s[6][11] = 0;
              s[7][0] = MP_DIGIT(a, 23);
              for (i = 1; i < 12; i++) {
                     s[7][i] = MP_DIGIT(a, i+11);
              }
              s[8][0] = 0;
              s[8][1] = MP_DIGIT(a, 20);
              s[8][2] = MP_DIGIT(a, 21);
              s[8][3] = MP_DIGIT(a, 22);
              s[8][4] = MP_DIGIT(a, 23);
              s[8][5] = 0;
              s[8][6] = 0;
              s[8][7] = 0;
              s[8][8] = 0;
              s[8][9] = 0;
              s[8][10] = 0;
              s[8][11] = 0;
              s[9][0] = 0;
              s[9][1] = 0;
              s[9][2] = 0;
              s[9][3] = MP_DIGIT(a, 23);
              s[9][4] = MP_DIGIT(a, 23);
              s[9][5] = 0;
              s[9][6] = 0;
              s[9][7] = 0;
              s[9][8] = 0;
              s[9][9] = 0;
              s[9][10] = 0;
              s[9][11] = 0;

              MP_CHECKOK(mp_add(&m[0], &m[1], r));
              MP_CHECKOK(mp_add(r, &m[1], r));
              MP_CHECKOK(mp_add(r, &m[2], r));
              MP_CHECKOK(mp_add(r, &m[3], r));
              MP_CHECKOK(mp_add(r, &m[4], r));
              MP_CHECKOK(mp_add(r, &m[5], r));
              MP_CHECKOK(mp_add(r, &m[6], r));
              MP_CHECKOK(mp_sub(r, &m[7], r));
              MP_CHECKOK(mp_sub(r, &m[8], r));
              MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
              s_mp_clamp(r);
       }
#else
       /* for polynomials larger than twice the field size or polynomials 
        * not using all words, use regular reduction */
       if ((a_bits > 768) || (a_bits <= 736)) {
              MP_CHECKOK(mp_mod(a, &meth->irr, r));
       } else {
              for (i = 0; i < 6; i++) {
                     s[0][i] = MP_DIGIT(a, i);
              }
              s[1][0] = 0;
              s[1][1] = 0;
              s[1][2] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
              s[1][3] = MP_DIGIT(a, 11) >> 32;
              s[1][4] = 0;
              s[1][5] = 0;
              for (i = 0; i < 6; i++) {
                     s[2][i] = MP_DIGIT(a, i+6);
              }
              s[3][0] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
              s[3][1] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
              for (i = 2; i < 6; i++) {
                     s[3][i] = (MP_DIGIT(a, i+4) >> 32) | (MP_DIGIT(a, i+5) << 32);
              }
              s[4][0] = (MP_DIGIT(a, 11) >> 32) << 32;
              s[4][1] = MP_DIGIT(a, 10) << 32;
              for (i = 2; i < 6; i++) {
                     s[4][i] = MP_DIGIT(a, i+4);
              }
              s[5][0] = 0;
              s[5][1] = 0;
              s[5][2] = MP_DIGIT(a, 10);
              s[5][3] = MP_DIGIT(a, 11);
              s[5][4] = 0;
              s[5][5] = 0;
              s[6][0] = (MP_DIGIT(a, 10) << 32) >> 32;
              s[6][1] = (MP_DIGIT(a, 10) >> 32) << 32;
              s[6][2] = MP_DIGIT(a, 11);
              s[6][3] = 0;
              s[6][4] = 0;
              s[6][5] = 0;
              s[7][0] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
              for (i = 1; i < 6; i++) {
                     s[7][i] = (MP_DIGIT(a, i+5) >> 32) | (MP_DIGIT(a, i+6) << 32);
              }
              s[8][0] = MP_DIGIT(a, 10) << 32;
              s[8][1] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
              s[8][2] = MP_DIGIT(a, 11) >> 32;
              s[8][3] = 0;
              s[8][4] = 0;
              s[8][5] = 0;
              s[9][0] = 0;
              s[9][1] = (MP_DIGIT(a, 11) >> 32) << 32;
              s[9][2] = MP_DIGIT(a, 11) >> 32;
              s[9][3] = 0;
              s[9][4] = 0;
              s[9][5] = 0;

              MP_CHECKOK(mp_add(&m[0], &m[1], r));
              MP_CHECKOK(mp_add(r, &m[1], r));
              MP_CHECKOK(mp_add(r, &m[2], r));
              MP_CHECKOK(mp_add(r, &m[3], r));
              MP_CHECKOK(mp_add(r, &m[4], r));
              MP_CHECKOK(mp_add(r, &m[5], r));
              MP_CHECKOK(mp_add(r, &m[6], r));
              MP_CHECKOK(mp_sub(r, &m[7], r));
              MP_CHECKOK(mp_sub(r, &m[8], r));
              MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
              s_mp_clamp(r);
       }
#endif

  CLEANUP:
       return res;
}

Here is the call graph for this function:

Here is the caller graph for this function:

mp_err ec_GFp_nistp384_mul ( const mp_int a,
const mp_int b,
mp_int r,
const GFMethod *  meth 
)

Definition at line 271 of file ecp_384.c.

{
       mp_err res = MP_OKAY;

       MP_CHECKOK(mp_mul(a, b, r));
       MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
  CLEANUP:
       return res;
}

Here is the call graph for this function:

Here is the caller graph for this function:

mp_err ec_GFp_nistp384_sqr ( const mp_int a,
mp_int r,
const GFMethod *  meth 
)

Definition at line 257 of file ecp_384.c.

{
       mp_err res = MP_OKAY;

       MP_CHECKOK(mp_sqr(a, r));
       MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
  CLEANUP:
       return res;
}

Here is the call graph for this function:

Here is the caller graph for this function:

mp_err ec_group_set_gfp384 ( ECGroup *  group,
ECCurveName  name 
)

Definition at line 285 of file ecp_384.c.

{
       if (name == ECCurve_NIST_P384) {
              group->meth->field_mod = &ec_GFp_nistp384_mod;
              group->meth->field_mul = &ec_GFp_nistp384_mul;
              group->meth->field_sqr = &ec_GFp_nistp384_sqr;
       }
       return MP_OKAY;
}