Back to index

glibc  2.9
Functions
branred.c File Reference
#include "endian.h"
#include "mydefs.h"
#include "branred.h"
#include "math_private.h"

Go to the source code of this file.

Functions

int __branred (double x, double *a, double *aa)

Function Documentation

int __branred ( double  x,
double *  a,
double *  aa 
)

Definition at line 48 of file branred.c.

{
  int i,k;
#if 0
  int n;
#endif
  mynumber  u,gor;
#if 0
  mynumber v;
#endif
  double r[6],s,t,sum,b,bb,sum1,sum2,b1,bb1,b2,bb2,x1,x2,t1,t2;

  x*=tm600.x;
  t=x*split;   /* split x to two numbers */
  x1=t-(t-x);
  x2=x-x1;
  sum=0;
  u.x = x1;
  k = (u.i[HIGH_HALF]>>20)&2047;
  k = (k-450)/24;
  if (k<0)
    k=0;
  gor.x = t576.x;
  gor.i[HIGH_HALF] -= ((k*24)<<20);
  for (i=0;i<6;i++)
    { r[i] = x1*toverp[k+i]*gor.x; gor.x *= tm24.x; }
  for (i=0;i<3;i++) {
    s=(r[i]+big.x)-big.x;
    sum+=s;
    r[i]-=s;
  }
  t=0;
  for (i=0;i<6;i++)
    t+=r[5-i];
  bb=(((((r[0]-t)+r[1])+r[2])+r[3])+r[4])+r[5];
  s=(t+big.x)-big.x;
  sum+=s;
  t-=s;
  b=t+bb;
  bb=(t-b)+bb;
  s=(sum+big1.x)-big1.x;
  sum-=s;
  b1=b;
  bb1=bb;
  sum1=sum;
  sum=0;

  u.x = x2;
  k = (u.i[HIGH_HALF]>>20)&2047;
  k = (k-450)/24;
  if (k<0)
    k=0;
  gor.x = t576.x;
  gor.i[HIGH_HALF] -= ((k*24)<<20);
  for (i=0;i<6;i++)
    { r[i] = x2*toverp[k+i]*gor.x; gor.x *= tm24.x; }
  for (i=0;i<3;i++) {
    s=(r[i]+big.x)-big.x;
    sum+=s;
    r[i]-=s;
  }
  t=0;
  for (i=0;i<6;i++)
    t+=r[5-i];
  bb=(((((r[0]-t)+r[1])+r[2])+r[3])+r[4])+r[5];
  s=(t+big.x)-big.x;
 sum+=s;
 t-=s;
 b=t+bb;
 bb=(t-b)+bb;
 s=(sum+big1.x)-big1.x;
 sum-=s;

 b2=b;
 bb2=bb;
 sum2=sum;

 sum=sum1+sum2;
 b=b1+b2;
 bb = (ABS(b1)>ABS(b2))? (b1-b)+b2 : (b2-b)+b1;
 if (b > 0.5)
   {b-=1.0; sum+=1.0;}
 else if (b < -0.5)
   {b+=1.0; sum-=1.0;}
 s=b+(bb+bb1+bb2);
 t=((b-s)+bb)+(bb1+bb2);
 b=s*split;
 t1=b-(b-s);
 t2=s-t1;
 b=s*hp0.x;
 bb=(((t1*mp1.x-b)+t1*mp2.x)+t2*mp1.x)+(t2*mp2.x+s*hp1.x+t*hp0.x);
 s=b+bb;
 t=(b-s)+bb;
 *a=s;
 *aa=t;
 return ((int) sum)&3; /* return quater of unit circle */
}

Here is the caller graph for this function: