Back to index

glibc  2.9
Classes | Functions
iconv_charmap.c File Reference
#include <assert.h>
#include <errno.h>
#include <error.h>
#include <fcntl.h>
#include <iconv.h>
#include <libintl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include "iconv_prog.h"

Go to the source code of this file.

Classes

struct  convtable
union  convtable.val

Functions

void * xmalloc (size_t __n)
void * xcalloc (size_t __n, size_t __s)
static struct convtableallocate_table (void)
static int is_term (struct convtable *tbl, unsigned int idx)
static void clear_term (struct convtable *tbl, unsigned int idx)
static void set_term (struct convtable *tbl, unsigned int idx)
static struct convtableuse_from_charmap (struct charmap_t *from_charmap, const char *to_code)
static struct convtableuse_to_charmap (const char *from_code, struct charmap_t *to_charmap)
static struct convtableuse_both_charmaps (struct charmap_t *from_charmap, struct charmap_t *to_charmap)
static int process_block (struct convtable *tbl, char *addr, size_t len, FILE *output)
static int process_fd (struct convtable *tbl, int fd, FILE *output)
static int process_file (struct convtable *tbl, FILE *input, FILE *output)
int charmap_conversion (const char *from_code, struct charmap_t *from_charmap, const char *to_code, struct charmap_t *to_charmap, int argc, int remaining, char *argv[], const char *output_file)
static void add_bytes (struct convtable *tbl, struct charseq *in, struct charseq *out)

Class Documentation

struct convtable

Definition at line 40 of file iconv_charmap.c.

Class Members
int term
union convtable val
union convtable.val

Definition at line 43 of file iconv_charmap.c.

Class Members
struct charseq * out
struct convtable * sub

Function Documentation

static void add_bytes ( struct convtable tbl,
struct charseq in,
struct charseq out 
) [static]

Definition at line 237 of file iconv_charmap.c.

{
  int n = 0;
  unsigned int byte;

  assert (in->nbytes > 0);

  byte = ((unsigned char *) in->bytes)[n];
  while (n + 1 < in->nbytes)
    {
      if (is_term (tbl, byte) || tbl->val[byte].sub == NULL)
       {
         /* Note that we simply ignore a definition for a byte sequence
            which is also the prefix for a longer one.  */
         clear_term (tbl, byte);
         tbl->val[byte].sub =
           (struct convtable *) xcalloc (1, sizeof (struct convtable));
       }

      tbl = tbl->val[byte].sub;

      byte = ((unsigned char *) in->bytes)[++n];
    }

  /* Only add the new sequence if there is none yet and the byte sequence
     is not part of an even longer one.  */
  if (! is_term (tbl, byte) && tbl->val[byte].sub == NULL)
    {
      set_term (tbl, byte);
      tbl->val[byte].out = out;
    }
}

Here is the call graph for this function:

Here is the caller graph for this function:

static struct convtable* allocate_table ( void  ) [static, read]

Definition at line 52 of file iconv_charmap.c.

{
  return (struct convtable *) xcalloc (1, sizeof (struct convtable));
}

Here is the call graph for this function:

Here is the caller graph for this function:

int charmap_conversion ( const char *  from_code,
struct charmap_t from_charmap,
const char *  to_code,
struct charmap_t to_charmap,
int  argc,
int  remaining,
char *  argv[],
const char *  output_file 
)

Definition at line 95 of file iconv_charmap.c.

{
  struct convtable *cvtbl;
  int status = EXIT_SUCCESS;

  /* We have three different cases to handle:

     - both, from_charmap and to_charmap, are available.  This means we
       can assume that the symbolic names match and use them to create
       the mapping.

     - only from_charmap is available.  In this case we can only hope that
       the symbolic names used are of the <Uxxxx> form in which case we
       can use a UCS4->"to_code" iconv() conversion for the second step.

     - only to_charmap is available.  This is similar, only that we would
       use iconv() for the "to_code"->UCS4 conversion.

       We first create a table which maps input bytes into output bytes.
       Once this is done we can handle all three of the cases above
       equally.  */
  if (from_charmap != NULL)
    {
      if (to_charmap == NULL)
       cvtbl = use_from_charmap (from_charmap, to_code);
      else
       cvtbl = use_both_charmaps (from_charmap, to_charmap);
    }
  else
    {
      assert (to_charmap != NULL);
      cvtbl = use_to_charmap (from_code, to_charmap);
    }

  /* If we couldn't generate a table stop now.  */
  if (cvtbl == NULL)
    return EXIT_FAILURE;

  /* Determine output file.  */
  FILE *output;
  if (output_file != NULL && strcmp (output_file, "-") != 0)
    {
      output = fopen (output_file, "w");
      if (output == NULL)
       error (EXIT_FAILURE, errno, _("cannot open output file"));
    }
  else
    output = stdout;

  /* We can now start the conversion.  */
  if (remaining == argc)
    {
      if (process_file (cvtbl, stdin, output) != 0)
       status = EXIT_FAILURE;
    }
  else
    do
      {
       struct stat st;
       char *addr;
       int fd;

       if (verbose)
         printf ("%s:\n", argv[remaining]);
       if (strcmp (argv[remaining], "-") == 0)
         fd = 0;
       else
         {
           fd = open (argv[remaining], O_RDONLY);

           if (fd == -1)
             {
              error (0, errno, _("cannot open input file `%s'"),
                     argv[remaining]);
              status = EXIT_FAILURE;
              continue;
             }
         }

#ifdef _POSIX_MAPPED_FILES
       /* We have possibilities for reading the input file.  First try
          to mmap() it since this will provide the fastest solution.  */
       if (fstat (fd, &st) == 0
           && ((addr = mmap (NULL, st.st_size, PROT_READ, MAP_PRIVATE,
                           fd, 0)) != MAP_FAILED))
         {
           /* Yes, we can use mmap().  The descriptor is not needed
              anymore.  */
           if (close (fd) != 0)
             error (EXIT_FAILURE, errno,
                   _("error while closing input `%s'"), argv[remaining]);

           if (process_block (cvtbl, addr, st.st_size, output) < 0)
             {
              /* Something went wrong.  */
              status = EXIT_FAILURE;

              /* We don't need the input data anymore.  */
              munmap ((void *) addr, st.st_size);

              /* We cannot go on with producing output since it might
                 lead to problem because the last output might leave
                 the output stream in an undefined state.  */
              break;
             }

           /* We don't need the input data anymore.  */
           munmap ((void *) addr, st.st_size);
         }
       else
#endif /* _POSIX_MAPPED_FILES */
         {
           /* Read the file in pieces.  */
           if (process_fd (cvtbl, fd, output) != 0)
             {
              /* Something went wrong.  */
              status = EXIT_FAILURE;

              /* We don't need the input file anymore.  */
              close (fd);

              /* We cannot go on with producing output since it might
                 lead to problem because the last output might leave
                 the output stream in an undefined state.  */
              break;
             }

           /* Now close the file.  */
           close (fd);
         }
      }
    while (++remaining < argc);

  /* All done.  */
  return status;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static void clear_term ( struct convtable tbl,
unsigned int  idx 
) [inline, static]

Definition at line 66 of file iconv_charmap.c.

{
  tbl->term[idx / 8] &= ~(1 << (idx % 8));
}

Here is the caller graph for this function:

static int is_term ( struct convtable tbl,
unsigned int  idx 
) [inline, static]

Definition at line 59 of file iconv_charmap.c.

{
  return tbl->term[idx / 8] & (1 << (idx % 8));
}

Here is the caller graph for this function:

static int process_block ( struct convtable tbl,
char *  addr,
size_t  len,
FILE output 
) [static]

Definition at line 443 of file iconv_charmap.c.

{
  size_t n = 0;

  while (n < len)
    {
      struct convtable *cur = tbl;
      unsigned char *curp = (unsigned char *) addr;
      unsigned int byte = *curp;
      int cnt;
      struct charseq *out;

      while (! is_term (cur, byte))
       if (cur->val[byte].sub == NULL)
         {
           /* This is a invalid sequence.  Skip the first byte if we are
              ignoring errors.  Otherwise punt.  */
           if (! omit_invalid)
             {
              error (0, 0, _("illegal input sequence at position %Zd"), n);
              return -1;
             }

           n -= curp - (unsigned char *) addr;

           byte = *(curp = (unsigned char *) ++addr);
           if (++n >= len)
             /* All converted.  */
             return 0;

           cur = tbl;
         }
       else
         {
           cur = cur->val[byte].sub;

           if (++n >= len)
             {
              error (0, 0, _("\
incomplete character or shift sequence at end of buffer"));
              return -1;
             }

           byte = *++curp;
         }

      /* We found a final byte.  Write the output bytes.  */
      out = cur->val[byte].out;
      for (cnt = 0; cnt < out->nbytes; ++cnt)
       fputc_unlocked (out->bytes[cnt], output);

      addr = (char *) curp + 1;
      ++n;
    }

  return 0;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static int process_fd ( struct convtable tbl,
int  fd,
FILE output 
) [static]

Definition at line 503 of file iconv_charmap.c.

{
  /* We have a problem with reading from a descriptor since we must not
     provide the iconv() function an incomplete character or shift
     sequence at the end of the buffer.  Since we have to deal with
     arbitrary encodings we must read the whole text in a buffer and
     process it in one step.  */
  static char *inbuf = NULL;
  static size_t maxlen = 0;
  char *inptr = inbuf;
  size_t actlen = 0;

  while (actlen < maxlen)
    {
      ssize_t n = read (fd, inptr, maxlen - actlen);

      if (n == 0)
       /* No more text to read.  */
       break;

      if (n == -1)
       {
         /* Error while reading.  */
         error (0, errno, _("error while reading the input"));
         return -1;
       }

      inptr += n;
      actlen += n;
    }

  if (actlen == maxlen)
    while (1)
      {
       ssize_t n;
       char *new_inbuf;

       /* Increase the buffer.  */
       new_inbuf = (char *) realloc (inbuf, maxlen + 32768);
       if (new_inbuf == NULL)
         {
           error (0, errno, _("unable to allocate buffer for input"));
           return -1;
         }
       inbuf = new_inbuf;
       maxlen += 32768;
       inptr = inbuf + actlen;

       do
         {
           n = read (fd, inptr, maxlen - actlen);

           if (n == 0)
             /* No more text to read.  */
             break;

           if (n == -1)
             {
              /* Error while reading.  */
              error (0, errno, _("error while reading the input"));
              return -1;
             }

           inptr += n;
           actlen += n;
         }
       while (actlen < maxlen);

       if (n == 0)
         /* Break again so we leave both loops.  */
         break;
      }

  /* Now we have all the input in the buffer.  Process it in one run.  */
  return process_block (tbl, inbuf, actlen, output);
}

Here is the call graph for this function:

Here is the caller graph for this function:

static int process_file ( struct convtable tbl,
FILE input,
FILE output 
) [static]

Definition at line 582 of file iconv_charmap.c.

{
  /* This should be safe since we use this function only for `stdin' and
     we haven't read anything so far.  */
  return process_fd (tbl, fileno (input), output);
}

Here is the call graph for this function:

static void set_term ( struct convtable tbl,
unsigned int  idx 
) [inline, static]

Definition at line 73 of file iconv_charmap.c.

{
  tbl->term[idx / 8] |= 1 << (idx % 8);
}

Here is the caller graph for this function:

static struct convtable * use_both_charmaps ( struct charmap_t from_charmap,
struct charmap_t to_charmap 
) [static, read]

Definition at line 416 of file iconv_charmap.c.

{
  /* In this case we iterate over all the entries in the from_charmap,
     determine the internal name, and find an appropriate entry in the
     to_charmap (if it exists).  */
  struct convtable *rettbl = allocate_table ();
  void *ptr = NULL;
  const void *key;
  size_t keylen;
  void *data;

  while (iterate_table (&from_charmap->char_table, &ptr, &key, &keylen, &data)
        >= 0)
    {
      struct charseq *in = (struct charseq *) data;
      struct charseq *out = charmap_find_value (to_charmap, key, keylen);

      if (out != NULL)
       add_bytes (rettbl, in, out);
    }

  return rettbl;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static struct convtable * use_from_charmap ( struct charmap_t from_charmap,
const char *  to_code 
) [static, read]

Definition at line 272 of file iconv_charmap.c.

{
  /* We iterate over all entries in the from_charmap and for those which
     have a known UCS4 representation we use an iconv() call to determine
     the mapping to the to_code charset.  */
  struct convtable *rettbl;
  iconv_t cd;
  void *ptr = NULL;
  const void *key;
  size_t keylen;
  void *data;

  cd = iconv_open (to_code, "WCHAR_T");
  if (cd == (iconv_t) -1)
    /* We cannot do anything.  */
    return NULL;

  rettbl = allocate_table ();

  while (iterate_table (&from_charmap->char_table, &ptr, &key, &keylen, &data)
        >= 0)
    {
      struct charseq *in = (struct charseq *) data;

      if (in->ucs4 != UNINITIALIZED_CHAR_VALUE)
       {
         /* There is a chance.  Try the iconv module.  */
         wchar_t inbuf[1] = { in->ucs4 };
         unsigned char outbuf[64];
         char *inptr = (char *) inbuf;
         size_t inlen = sizeof (inbuf);
         char *outptr = (char *) outbuf;
         size_t outlen = sizeof (outbuf);

         (void) iconv (cd, &inptr, &inlen, &outptr, &outlen);

         if (outptr != (char *) outbuf)
           {
             /* We got some output.  Good, use it.  */
             struct charseq *newp;

             outlen = sizeof (outbuf) - outlen;
             assert ((char *) outbuf + outlen == outptr);

             newp = (struct charseq *) xmalloc (sizeof (struct charseq)
                                           + outlen);
             newp->name = in->name;
             newp->ucs4 = in->ucs4;
             newp->nbytes = outlen;
             memcpy (newp->bytes, outbuf, outlen);

             add_bytes (rettbl, in, newp);
           }

         /* Clear any possible state left behind.  */
         (void) iconv (cd, NULL, NULL, NULL, NULL);
       }
    }

  iconv_close (cd);

  return rettbl;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static struct convtable * use_to_charmap ( const char *  from_code,
struct charmap_t to_charmap 
) [static, read]

Definition at line 338 of file iconv_charmap.c.

{
  /* We iterate over all entries in the to_charmap and for those which
     have a known UCS4 representation we use an iconv() call to determine
     the mapping to the from_code charset.  */
  struct convtable *rettbl;
  iconv_t cd;
  void *ptr = NULL;
  const void *key;
  size_t keylen;
  void *data;

  /* Note that the conversion we use here is the reverse direction.  Without
     exhaustive search we cannot figure out which input yields the UCS4
     character we are looking for.  Therefore we determine it the other
     way round.  */
  cd = iconv_open (from_code, "WCHAR_T");
  if (cd == (iconv_t) -1)
    /* We cannot do anything.  */
    return NULL;

  rettbl = allocate_table ();

  while (iterate_table (&to_charmap->char_table, &ptr, &key, &keylen, &data)
        >= 0)
    {
      struct charseq *out = (struct charseq *) data;

      if (out->ucs4 != UNINITIALIZED_CHAR_VALUE)
       {
         /* There is a chance.  Try the iconv module.  */
         wchar_t inbuf[1] = { out->ucs4 };
         unsigned char outbuf[64];
         char *inptr = (char *) inbuf;
         size_t inlen = sizeof (inbuf);
         char *outptr = (char *) outbuf;
         size_t outlen = sizeof (outbuf);

         (void) iconv (cd, &inptr, &inlen, &outptr, &outlen);

         if (outptr != (char *) outbuf)
           {
             /* We got some output.  Good, use it.  */
             union
             {
              struct charseq seq;
              struct
              {
                const char *name;
                uint32_t ucs4;
                int nbytes;
                unsigned char bytes[outlen];
              } mem;
             } new;

             outlen = sizeof (outbuf) - outlen;
             assert ((char *) outbuf + outlen == outptr);

             new.mem.name = out->name;
             new.mem.ucs4 = out->ucs4;
             new.mem.nbytes = outlen;
             memcpy (new.mem.bytes, outbuf, outlen);

             add_bytes (rettbl, &new.seq, out);
           }

         /* Clear any possible state left behind.  */
         (void) iconv (cd, NULL, NULL, NULL, NULL);
       }
    }

  iconv_close (cd);

  return rettbl;
}

Here is the call graph for this function:

Here is the caller graph for this function:

void* xcalloc ( size_t  __n,
size_t  __s 
)

Definition at line 91 of file xmalloc.c.

{
  VOID *p;

  p = calloc (n, s);
  if (p == 0)
    p = fixup_null_alloc (n);
  return p;
}
void* xmalloc ( size_t  __n)

Definition at line 77 of file xmalloc.c.

{
  VOID *p;

  p = malloc (n);
  if (p == 0)
    p = fixup_null_alloc (n);
  return p;
}