Back to index

glibc  2.9
Defines
dla.h File Reference
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Defines

#define CN   134217729.0
#define EADD(x, y, z, zz)   z=(x)+(y); zz=(ABS(x)>ABS(y)) ? (((x)-(z))+(y)) : (((y)-(z))+(x));
#define ESUB(x, y, z, zz)   z=(x)-(y); zz=(ABS(x)>ABS(y)) ? (((x)-(z))-(y)) : ((x)-((y)+(z)));
#define EMULV(x, y, z, zz, p, hx, tx, hy, ty)
#define MUL12(x, y, z, zz, p, hx, tx, hy, ty, q)
#define ADD2(x, xx, y, yy, z, zz, r, s)
#define SUB2(x, xx, y, yy, z, zz, r, s)
#define MUL2(x, xx, y, yy, z, zz, p, hx, tx, hy, ty, q, c, cc)
#define DIV2(x, xx, y, yy, z, zz, p, hx, tx, hy, ty, q, c, cc, u, uu)
#define ADD2A(x, xx, y, yy, z, zz, r, rr, s, ss, u, uu, w)
#define SUB2A(x, xx, y, yy, z, zz, r, rr, s, ss, u, uu, w)

Define Documentation

#define ADD2 (   x,
  xx,
  y,
  yy,
  z,
  zz,
  r,
  s 
)
Value:
r=(x)+(y);  s=(ABS(x)>ABS(y)) ?           \
                       (((((x)-r)+(y))+(yy))+(xx)) : \
                       (((((y)-r)+(x))+(xx))+(yy));  \
           z=r+s;  zz=(r-z)+s;

Definition at line 86 of file dla.h.

#define ADD2A (   x,
  xx,
  y,
  yy,
  z,
  zz,
  r,
  rr,
  s,
  ss,
  u,
  uu,
 
)
Value:
r=(x)+(y);                                                  \
           if (ABS(x)>ABS(y)) { rr=((x)-r)+(y);  s=(rr+(yy))+(xx); }   \
           else               { rr=((y)-r)+(x);  s=(rr+(xx))+(yy); }   \
           if (rr!=0.0) {                                              \
             z=r+s;  zz=(r-z)+s; }                                     \
           else {                                                      \
             ss=(ABS(xx)>ABS(yy)) ? (((xx)-s)+(yy)) : (((yy)-s)+(xx)); \
             u=r+s;                                                    \
             uu=(ABS(r)>ABS(s))   ? ((r-u)+s)   : ((s-u)+r)  ;         \
             w=uu+ss;  z=u+w;                                          \
             zz=(ABS(u)>ABS(w))   ? ((u-z)+w)   : ((w-z)+u)  ; }

Definition at line 135 of file dla.h.

#define CN   134217729.0

Definition at line 39 of file dla.h.

#define DIV2 (   x,
  xx,
  y,
  yy,
  z,
  zz,
  p,
  hx,
  tx,
  hy,
  ty,
  q,
  c,
  cc,
  u,
  uu 
)
Value:
c=(x)/(y);   MUL12(c,y,u,uu,p,hx,tx,hy,ty,q)  \
           cc=(((((x)-u)-uu)+(xx))-c*(yy))/(y);   z=c+cc;   zz=(c-z)+cc;

Definition at line 123 of file dla.h.

#define EADD (   x,
  y,
  z,
  zz 
)    z=(x)+(y); zz=(ABS(x)>ABS(y)) ? (((x)-(z))+(y)) : (((y)-(z))+(x));

Definition at line 46 of file dla.h.

#define EMULV (   x,
  y,
  z,
  zz,
  p,
  hx,
  tx,
  hy,
  ty 
)
Value:
p=CN*(x);  hx=((x)-p)+p;  tx=(x)-hx; \
           p=CN*(y);  hy=((y)-p)+p;  ty=(y)-hy; \
           z=(x)*(y); zz=(((hx*hy-z)+hx*ty)+tx*hy)+tx*ty;

Definition at line 63 of file dla.h.

#define ESUB (   x,
  y,
  z,
  zz 
)    z=(x)-(y); zz=(ABS(x)>ABS(y)) ? (((x)-(z))-(y)) : ((x)-((y)+(z)));

Definition at line 54 of file dla.h.

#define MUL12 (   x,
  y,
  z,
  zz,
  p,
  hx,
  tx,
  hy,
  ty,
 
)
Value:
p=CN*(x);  hx=((x)-p)+p;  tx=(x)-hx; \
           p=CN*(y);  hy=((y)-p)+p;  ty=(y)-hy; \
           p=hx*hy;  q=hx*ty+tx*hy; z=p+q;  zz=((p-z)+q)+tx*ty;

Definition at line 74 of file dla.h.

#define MUL2 (   x,
  xx,
  y,
  yy,
  z,
  zz,
  p,
  hx,
  tx,
  hy,
  ty,
  q,
  c,
  cc 
)
Value:
MUL12(x,y,c,cc,p,hx,tx,hy,ty,q)          \
           cc=((x)*(yy)+(xx)*(y))+cc;   z=c+cc;   zz=(c-z)+cc;

Definition at line 112 of file dla.h.

#define SUB2 (   x,
  xx,
  y,
  yy,
  z,
  zz,
  r,
  s 
)
Value:
r=(x)-(y);  s=(ABS(x)>ABS(y)) ?           \
                       (((((x)-r)-(y))-(yy))+(xx)) : \
                       ((((x)-((y)+r))+(xx))-(yy));  \
           z=r+s;  zz=(r-z)+s;

Definition at line 99 of file dla.h.

#define SUB2A (   x,
  xx,
  y,
  yy,
  z,
  zz,
  r,
  rr,
  s,
  ss,
  u,
  uu,
 
)
Value:
r=(x)-(y);                                                  \
           if (ABS(x)>ABS(y)) { rr=((x)-r)-(y);  s=(rr-(yy))+(xx); }   \
           else               { rr=(x)-((y)+r);  s=(rr+(xx))-(yy); }   \
           if (rr!=0.0) {                                              \
             z=r+s;  zz=(r-z)+s; }                                     \
           else {                                                      \
             ss=(ABS(xx)>ABS(yy)) ? (((xx)-s)-(yy)) : ((xx)-((yy)+s)); \
             u=r+s;                                                    \
             uu=(ABS(r)>ABS(s))   ? ((r-u)+s)   : ((s-u)+r)  ;         \
             w=uu+ss;  z=u+w;                                          \
             zz=(ABS(u)>ABS(w))   ? ((u-z)+w)   : ((w-z)+u)  ; }

Definition at line 156 of file dla.h.