Back to index

glibc  2.9
Functions
crypt-private.h File Reference
#include <features.h>
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Functions

void _ufc_doit_r (ufc_long itr, struct crypt_data *__restrict __data, ufc_long *res)
void __init_des_r (struct crypt_data *__restrict __data)
void __init_des (void)
void _ufc_setup_salt_r (__const char *s, struct crypt_data *__restrict __data)
void _ufc_mk_keytab_r (__const char *key, struct crypt_data *__restrict __data)
void _ufc_dofinalperm_r (ufc_long *res, struct crypt_data *__restrict __data)
void _ufc_output_conversion_r (ufc_long v1, ufc_long v2, __const char *salt, struct crypt_data *__restrict __data)
void __setkey_r (__const char *__key, struct crypt_data *__restrict __data)
void __encrypt_r (char *__restrict __block, int __edflag, struct crypt_data *__restrict __data)
char * __crypt_r (__const char *__key, __const char *__salt, struct crypt_data *__restrict __data)
char * fcrypt (__const char *key, __const char *salt)

Function Documentation

char* __crypt_r ( __const char *  __key,
__const char *  __salt,
struct crypt_data *__restrict  __data 
)
void __encrypt_r ( char *__restrict  __block,
int  __edflag,
struct crypt_data *__restrict  __data 
)

Here is the caller graph for this function:

void __init_des ( void  )

Definition at line 546 of file crypt_util.c.

{
  __init_des_r(&_ufc_foobar);
}

Here is the call graph for this function:

void __init_des_r ( struct crypt_data *__restrict  __data)

Definition at line 344 of file crypt_util.c.

{
  int comes_from_bit;
  int bit, sg;
  ufc_long j;
  ufc_long mask1, mask2;
  int e_inverse[64];
  static volatile int small_tables_initialized = 0;

#ifdef _UFC_32_
  long32 *sb[4];
  sb[0] = (long32*)__data->sb0; sb[1] = (long32*)__data->sb1;
  sb[2] = (long32*)__data->sb2; sb[3] = (long32*)__data->sb3;
#endif
#ifdef _UFC_64_
  long64 *sb[4];
  sb[0] = (long64*)__data->sb0; sb[1] = (long64*)__data->sb1;
  sb[2] = (long64*)__data->sb2; sb[3] = (long64*)__data->sb3;
#endif

  if(small_tables_initialized == 0) {
#ifdef __GNU_LIBRARY__
    __libc_lock_lock (_ufc_tables_lock);
    if(small_tables_initialized)
      goto small_tables_done;
#endif

    /*
     * Create the do_pc1 table used
     * to affect pc1 permutation
     * when generating keys
     */
    _ufc_clearmem((char*)do_pc1, (int)sizeof(do_pc1));
    for(bit = 0; bit < 56; bit++) {
      comes_from_bit  = pc1[bit] - 1;
      mask1 = bytemask[comes_from_bit % 8 + 1];
      mask2 = longmask[bit % 28 + 4];
      for(j = 0; j < 128; j++) {
       if(j & mask1)
         do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2;
      }
    }

    /*
     * Create the do_pc2 table used
     * to affect pc2 permutation when
     * generating keys
     */
    _ufc_clearmem((char*)do_pc2, (int)sizeof(do_pc2));
    for(bit = 0; bit < 48; bit++) {
      comes_from_bit  = pc2[bit] - 1;
      mask1 = bytemask[comes_from_bit % 7 + 1];
      mask2 = BITMASK[bit % 24];
      for(j = 0; j < 128; j++) {
       if(j & mask1)
         do_pc2[comes_from_bit / 7][j] |= mask2;
      }
    }

    /*
     * Now generate the table used to do combined
     * 32 bit permutation and e expansion
     *
     * We use it because we have to permute 16384 32 bit
     * longs into 48 bit in order to initialize sb.
     *
     * Looping 48 rounds per permutation becomes
     * just too slow...
     *
     */

    _ufc_clearmem((char*)eperm32tab, (int)sizeof(eperm32tab));
    for(bit = 0; bit < 48; bit++) {
      ufc_long mask1,comes_from;
      comes_from = perm32[esel[bit]-1]-1;
      mask1      = bytemask[comes_from % 8];
      for(j = 256; j--;) {
       if(j & mask1)
         eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK[bit % 24];
      }
    }

    /*
     * Create an inverse matrix for esel telling
     * where to plug out bits if undoing it
     */
    for(bit=48; bit--;) {
      e_inverse[esel[bit] - 1     ] = bit;
      e_inverse[esel[bit] - 1 + 32] = bit + 48;
    }

    /*
     * create efp: the matrix used to
     * undo the E expansion and effect final permutation
     */
    _ufc_clearmem((char*)efp, (int)sizeof efp);
    for(bit = 0; bit < 64; bit++) {
      int o_bit, o_long;
      ufc_long word_value, mask1, mask2;
      int comes_from_f_bit, comes_from_e_bit;
      int comes_from_word, bit_within_word;

      /* See where bit i belongs in the two 32 bit long's */
      o_long = bit / 32; /* 0..1  */
      o_bit  = bit % 32; /* 0..31 */

      /*
       * And find a bit in the e permutated value setting this bit.
       *
       * Note: the e selection may have selected the same bit several
       * times. By the initialization of e_inverse, we only look
       * for one specific instance.
       */
      comes_from_f_bit = final_perm[bit] - 1;         /* 0..63 */
      comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */
      comes_from_word  = comes_from_e_bit / 6;        /* 0..15 */
      bit_within_word  = comes_from_e_bit % 6;        /* 0..5  */

      mask1 = longmask[bit_within_word + 26];
      mask2 = longmask[o_bit];

      for(word_value = 64; word_value--;) {
       if(word_value & mask1)
         efp[comes_from_word][word_value][o_long] |= mask2;
      }
    }
    small_tables_initialized = 1;
#ifdef __GNU_LIBRARY__
small_tables_done:
    __libc_lock_unlock(_ufc_tables_lock);
#endif
  }

  /*
   * Create the sb tables:
   *
   * For each 12 bit segment of an 48 bit intermediate
   * result, the sb table precomputes the two 4 bit
   * values of the sbox lookups done with the two 6
   * bit halves, shifts them to their proper place,
   * sends them through perm32 and finally E expands
   * them so that they are ready for the next
   * DES round.
   *
   */

  _ufc_clearmem((char*)__data->sb0, (int)sizeof(__data->sb0));
  _ufc_clearmem((char*)__data->sb1, (int)sizeof(__data->sb1));
  _ufc_clearmem((char*)__data->sb2, (int)sizeof(__data->sb2));
  _ufc_clearmem((char*)__data->sb3, (int)sizeof(__data->sb3));

  for(sg = 0; sg < 4; sg++) {
    int j1, j2;
    int s1, s2;

    for(j1 = 0; j1 < 64; j1++) {
      s1 = s_lookup(2 * sg, j1);
      for(j2 = 0; j2 < 64; j2++) {
       ufc_long to_permute, inx;

       s2         = s_lookup(2 * sg + 1, j2);
       to_permute = (((ufc_long)s1 << 4)  |
                    (ufc_long)s2) << (24 - 8 * (ufc_long)sg);

#ifdef _UFC_32_
       inx = ((j1 << 6)  | j2) << 1;
       sb[sg][inx  ]  = eperm32tab[0][(to_permute >> 24) & 0xff][0];
       sb[sg][inx+1]  = eperm32tab[0][(to_permute >> 24) & 0xff][1];
       sb[sg][inx  ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0];
       sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1];
       sb[sg][inx  ] |= eperm32tab[2][(to_permute >>  8) & 0xff][0];
       sb[sg][inx+1] |= eperm32tab[2][(to_permute >>  8) & 0xff][1];
       sb[sg][inx  ] |= eperm32tab[3][(to_permute)       & 0xff][0];
       sb[sg][inx+1] |= eperm32tab[3][(to_permute)       & 0xff][1];
#endif
#ifdef _UFC_64_
       inx = ((j1 << 6)  | j2);
       sb[sg][inx]  =
         ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) |
          (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1];
       sb[sg][inx] |=
         ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) |
          (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1];
       sb[sg][inx] |=
         ((long64)eperm32tab[2][(to_permute >>  8) & 0xff][0] << 32) |
          (long64)eperm32tab[2][(to_permute >>  8) & 0xff][1];
       sb[sg][inx] |=
         ((long64)eperm32tab[3][(to_permute)       & 0xff][0] << 32) |
          (long64)eperm32tab[3][(to_permute)       & 0xff][1];
#endif
      }
    }
  }

  __data->current_saltbits = 0;
  __data->current_salt[0] = 0;
  __data->current_salt[1] = 0;
  __data->initialized++;
}

Here is the call graph for this function:

Here is the caller graph for this function:

void __setkey_r ( __const char *  __key,
struct crypt_data *__restrict  __data 
)

Definition at line 890 of file crypt_util.c.

{
  int i,j;
  unsigned char c;
  unsigned char ktab[8];

  _ufc_setup_salt_r("..", __data); /* be sure we're initialized */

  for(i = 0; i < 8; i++) {
    for(j = 0, c = 0; j < 8; j++)
      c = c << 1 | *__key++;
    ktab[i] = c >> 1;
  }
  _ufc_mk_keytab_r((char *) ktab, __data);
}

Here is the call graph for this function:

Here is the caller graph for this function:

void _ufc_dofinalperm_r ( ufc_long res,
struct crypt_data *__restrict  __data 
)

Definition at line 701 of file crypt_util.c.

{
  ufc_long v1, v2, x;
  ufc_long l1,l2,r1,r2;

  l1 = res[0]; l2 = res[1];
  r1 = res[2]; r2 = res[3];

  x = (l1 ^ l2) & __data->current_saltbits; l1 ^= x; l2 ^= x;
  x = (r1 ^ r2) & __data->current_saltbits; r1 ^= x; r2 ^= x;

  v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3;

  v1 |= efp[15][ r2         & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1];
  v1 |= efp[14][(r2 >>= 6)  & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1];
  v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1];
  v1 |= efp[12][(r2 >>= 6)  & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1];

  v1 |= efp[11][ r1         & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1];
  v1 |= efp[10][(r1 >>= 6)  & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1];
  v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1];
  v1 |= efp[ 8][(r1 >>= 6)  & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1];

  v1 |= efp[ 7][ l2         & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1];
  v1 |= efp[ 6][(l2 >>= 6)  & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1];
  v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1];
  v1 |= efp[ 4][(l2 >>= 6)  & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1];

  v1 |= efp[ 3][ l1         & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1];
  v1 |= efp[ 2][(l1 >>= 6)  & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1];
  v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1];
  v1 |= efp[ 0][(l1 >>= 6)  & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1];

  res[0] = v1; res[1] = v2;
}

Here is the caller graph for this function:

void _ufc_doit_r ( ufc_long  itr,
struct crypt_data *__restrict  __data,
ufc_long res 
)

Definition at line 86 of file crypt.c.

{
  int i;
  long64 l, r, s, *k;
  register long64 *sb01 = (long64*)__data->sb0;
  register long64 *sb23 = (long64*)__data->sb2;

  l = (((long64)res[0]) << 32) | ((long64)res[1]);
  r = (((long64)res[2]) << 32) | ((long64)res[3]);

  while(itr--) {
    k = (long64*)__data->keysched;
    for(i=8; i--; ) {
      s = *k++ ^ r;
      l ^= SBA(sb23, (s       ) & 0xffff);
      l ^= SBA(sb23, (s >>= 16) & 0xffff);
      l ^= SBA(sb01, (s >>= 16) & 0xffff);
      l ^= SBA(sb01, (s >>= 16)         );

      s = *k++ ^ l;
      r ^= SBA(sb23, (s       ) & 0xffff);
      r ^= SBA(sb23, (s >>= 16) & 0xffff);
      r ^= SBA(sb01, (s >>= 16) & 0xffff);
      r ^= SBA(sb01, (s >>= 16)         );
    }
    s=l; l=r; r=s;
  }

  res[0] = l >> 32; res[1] = l & 0xffffffff;
  res[2] = r >> 32; res[3] = r & 0xffffffff;
}

Here is the caller graph for this function:

void _ufc_mk_keytab_r ( __const char *  key,
struct crypt_data *__restrict  __data 
)

Here is the caller graph for this function:

void _ufc_output_conversion_r ( ufc_long  v1,
ufc_long  v2,
__const char *  salt,
struct crypt_data *__restrict  __data 
)

Definition at line 745 of file crypt_util.c.

{
  int i, s, shf;

  __data->crypt_3_buf[0] = salt[0];
  __data->crypt_3_buf[1] = salt[1] ? salt[1] : salt[0];

  for(i = 0; i < 5; i++) {
    shf = (26 - 6 * i); /* to cope with MSC compiler bug */
    __data->crypt_3_buf[i + 2] = bin_to_ascii((v1 >> shf) & 0x3f);
  }

  s  = (v2 & 0xf) << 2;
  v2 = (v2 >> 2) | ((v1 & 0x3) << 30);

  for(i = 5; i < 10; i++) {
    shf = (56 - 6 * i);
    __data->crypt_3_buf[i + 2] = bin_to_ascii((v2 >> shf) & 0x3f);
  }

  __data->crypt_3_buf[12] = bin_to_ascii(s);
  __data->crypt_3_buf[13] = 0;
}

Here is the caller graph for this function:

void _ufc_setup_salt_r ( __const char *  s,
struct crypt_data *__restrict  __data 
)

Definition at line 593 of file crypt_util.c.

{
  ufc_long i, j, saltbits;

  if(__data->initialized == 0)
    __init_des_r(__data);

  if(s[0] == __data->current_salt[0] && s[1] == __data->current_salt[1])
    return;
  __data->current_salt[0] = s[0]; __data->current_salt[1] = s[1];

  /*
   * This is the only crypt change to DES:
   * entries are swapped in the expansion table
   * according to the bits set in the salt.
   */
  saltbits = 0;
  for(i = 0; i < 2; i++) {
    long c=ascii_to_bin(s[i]);
    for(j = 0; j < 6; j++) {
      if((c >> j) & 0x1)
       saltbits |= BITMASK[6 * i + j];
    }
  }

  /*
   * Permute the sb table values
   * to reflect the changed e
   * selection table
   */
#ifdef _UFC_32_
#define LONGG long32*
#endif
#ifdef _UFC_64_
#define LONGG long64*
#endif

  shuffle_sb((LONGG)__data->sb0, __data->current_saltbits ^ saltbits);
  shuffle_sb((LONGG)__data->sb1, __data->current_saltbits ^ saltbits);
  shuffle_sb((LONGG)__data->sb2, __data->current_saltbits ^ saltbits);
  shuffle_sb((LONGG)__data->sb3, __data->current_saltbits ^ saltbits);

  __data->current_saltbits = saltbits;
}

Here is the call graph for this function:

Here is the caller graph for this function:

char* fcrypt ( __const char *  key,
__const char *  salt 
)

Here is the caller graph for this function: