Back to index

cell-binutils  2.17cvs20070401
Classes | Defines | Typedefs | Functions | Variables
elf64-hppa.c File Reference
#include "alloca-conf.h"
#include "bfd.h"
#include "sysdep.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf/hppa.h"
#include "libhppa.h"
#include "elf64-hppa.h"
#include "elf-hppa.h"
#include "elf64-target.h"

Go to the source code of this file.

Classes

struct  elf64_hppa_dyn_hash_entry
struct  elf64_hppa_dyn_hash_entry::elf64_hppa_dyn_reloc_entry
struct  elf64_hppa_dyn_hash_table
struct  elf64_hppa_allocate_data

Defines

#define ARCH_SIZE   64
#define PLT_ENTRY_SIZE   0x10
#define DLT_ENTRY_SIZE   0x8
#define OPD_ENTRY_SIZE   0x20
#define ELF_DYNAMIC_INTERPRETER   "/usr/lib/pa20_64/dld.sl"
#define elf64_hppa_hash_table(p)   ((struct elf64_hppa_link_hash_table *) ((p)->hash))
#define add_dynamic_entry(TAG, VAL)   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
#define TARGET_BIG_SYM   bfd_elf64_hppa_vec
#define TARGET_BIG_NAME   "elf64-hppa"
#define ELF_ARCH   bfd_arch_hppa
#define ELF_MACHINE_CODE   EM_PARISC
#define ELF_MAXPAGESIZE   0x1000
#define ELF_OSABI   ELFOSABI_HPUX
#define bfd_elf64_bfd_reloc_type_lookup   elf_hppa_reloc_type_lookup
#define bfd_elf64_bfd_reloc_name_lookup   elf_hppa_reloc_name_lookup
#define bfd_elf64_bfd_is_local_label_name   elf_hppa_is_local_label_name
#define elf_info_to_howto   elf_hppa_info_to_howto
#define elf_info_to_howto_rel   elf_hppa_info_to_howto_rel
#define elf_backend_section_from_shdr   elf64_hppa_section_from_shdr
#define elf_backend_object_p   elf64_hppa_object_p
#define elf_backend_final_write_processing   elf_hppa_final_write_processing
#define elf_backend_fake_sections   elf_hppa_fake_sections
#define elf_backend_add_symbol_hook   elf_hppa_add_symbol_hook
#define elf_backend_relocate_section   elf_hppa_relocate_section
#define bfd_elf64_bfd_final_link   elf_hppa_final_link
#define elf_backend_create_dynamic_sections   elf64_hppa_create_dynamic_sections
#define elf_backend_post_process_headers   elf64_hppa_post_process_headers
#define elf_backend_omit_section_dynsym   ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
#define elf_backend_adjust_dynamic_symbol   elf64_hppa_adjust_dynamic_symbol
#define elf_backend_size_dynamic_sections   elf64_hppa_size_dynamic_sections
#define elf_backend_finish_dynamic_symbol   elf64_hppa_finish_dynamic_symbol
#define elf_backend_finish_dynamic_sections   elf64_hppa_finish_dynamic_sections
#define elf_backend_grok_prstatus   elf64_hppa_grok_prstatus
#define elf_backend_grok_psinfo   elf64_hppa_grok_psinfo
#define bfd_elf64_bfd_link_hash_table_create   elf64_hppa_hash_table_create
#define elf_backend_check_relocs   elf64_hppa_check_relocs
#define elf_backend_size_info   hppa64_elf_size_info
#define elf_backend_additional_program_headers   elf64_hppa_additional_program_headers
#define elf_backend_modify_segment_map   elf64_hppa_modify_segment_map
#define elf_backend_link_output_symbol_hook   elf64_hppa_link_output_symbol_hook
#define elf_backend_want_got_plt   0
#define elf_backend_plt_readonly   0
#define elf_backend_want_plt_sym   0
#define elf_backend_got_header_size   0
#define elf_backend_type_change_ok   TRUE
#define elf_backend_get_symbol_type   elf64_hppa_elf_get_symbol_type
#define elf_backend_reloc_type_class   elf64_hppa_reloc_type_class
#define elf_backend_rela_normal   1
#define elf_backend_special_sections   elf64_hppa_special_sections
#define elf_backend_action_discarded   elf_hppa_action_discarded
#define elf_backend_section_from_phdr   elf64_hppa_section_from_phdr
#define elf64_bed   elf64_hppa_hpux_bed
#define TARGET_BIG_SYM   bfd_elf64_hppa_linux_vec
#define TARGET_BIG_NAME   "elf64-hppa-linux"
#define ELF_OSABI   ELFOSABI_LINUX
#define elf_backend_post_process_headers   _bfd_elf_set_osabi
#define elf64_bed   elf64_hppa_linux_bed

Typedefs

typedef struct bfd_hash_entry
*new_hash_entry_func 
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *))

Functions

static struct bfd_hash_entry
*elf64_hppa_new_dyn_hash_entry 
PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string))
static struct
bfd_link_hash_table
*elf64_hppa_hash_table_create 
PARAMS ((bfd *abfd))
static struct
elf64_hppa_dyn_hash_entry
*elf64_hppa_dyn_hash_lookup 
PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string, bfd_boolean create, bfd_boolean copy))
static void
elf64_hppa_dyn_hash_traverse 
PARAMS ((struct elf64_hppa_dyn_hash_table *table, bfd_boolean(*func)(struct elf64_hppa_dyn_hash_entry *, PTR), PTR info))
static const char *get_dyn_name PARAMS ((bfd *, struct elf_link_hash_entry *, const Elf_Internal_Rela *, char **, size_t *))
static bfd_boolean
elf64_hppa_object_p 
PARAMS ((bfd *))
static void
elf64_hppa_post_process_headers 
PARAMS ((bfd *, struct bfd_link_info *))
static bfd_boolean
elf64_hppa_adjust_dynamic_symbol 
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *))
static bfd_boolean
elf64_hppa_mark_milli_and_exported_functions 
PARAMS ((struct elf_link_hash_entry *, PTR))
static bfd_boolean
elf64_hppa_link_output_symbol_hook 
PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *, struct elf_link_hash_entry *))
static bfd_boolean
elf64_hppa_finish_dynamic_symbol 
PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, Elf_Internal_Sym *))
static enum elf_reloc_type_class PARAMS ((const Elf_Internal_Rela *))
static bfd_boolean
elf64_hppa_check_relocs 
PARAMS ((bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *))
static bfd_boolean
elf64_hppa_dynamic_symbol_p 
PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *))
static bfd_boolean
elf64_hppa_finalize_opd 
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR))
static bfd_boolean
get_reloc_section 
PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *))
static bfd_boolean count_dyn_reloc PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *, int, asection *, int, bfd_vma, bfd_vma))
static bfd_boolean get_opd PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *))
static int
elf64_hppa_elf_get_symbol_type 
PARAMS ((Elf_Internal_Sym *, int))
static bfd_boolean elf64_hppa_dyn_hash_table_init (struct elf64_hppa_dyn_hash_table *ht, bfd *abfd ATTRIBUTE_UNUSED, new_hash_entry_func new, unsigned int entsize)
static struct bfd_hash_entryelf64_hppa_new_dyn_hash_entry (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string)
static struct bfd_link_hash_tableelf64_hppa_hash_table_create (bfd *abfd)
static struct
elf64_hppa_dyn_hash_entry
elf64_hppa_dyn_hash_lookup (struct elf64_hppa_dyn_hash_table *table, const char *string, bfd_boolean create, bfd_boolean copy)
static void elf64_hppa_dyn_hash_traverse (struct elf64_hppa_dyn_hash_table *table, bfd_boolean *func, PTR info)
static bfd_boolean elf64_hppa_object_p (bfd *abfd)
static bfd_boolean elf64_hppa_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr, const char *name, int shindex)
static const char * get_dyn_name (bfd *abfd, struct elf_link_hash_entry *h, const Elf_Internal_Rela *rel, char **pbuf, size_t *plen)
static bfd_boolean get_reloc_section (bfd *abfd, struct elf64_hppa_link_hash_table *hppa_info, asection *sec)
static bfd_boolean count_dyn_reloc (bfd *abfd, struct elf64_hppa_dyn_hash_entry *dyn_h, int type, asection *sec, int sec_symndx, bfd_vma offset, bfd_vma addend)
static bfd_boolean elf64_hppa_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs)
static bfd_boolean elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *h, struct bfd_link_info *info)
static bfd_boolean elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *h, PTR data)
static bfd_boolean allocate_global_data_dlt (struct elf64_hppa_dyn_hash_entry *dyn_h, PTR data)
static bfd_boolean allocate_global_data_plt (struct elf64_hppa_dyn_hash_entry *dyn_h, PTR data)
static bfd_boolean allocate_global_data_stub (struct elf64_hppa_dyn_hash_entry *dyn_h, PTR data)
static bfd_boolean allocate_global_data_opd (struct elf64_hppa_dyn_hash_entry *dyn_h, PTR data)
static void elf64_hppa_post_process_headers (bfd *abfd, link_info)
static bfd_boolean get_opd (bfd *abfd, info, struct elf64_hppa_link_hash_table *hppa_info)
static bfd_boolean get_plt (bfd *abfd, info, struct elf64_hppa_link_hash_table *hppa_info)
static bfd_boolean get_dlt (bfd *abfd, info, struct elf64_hppa_link_hash_table *hppa_info)
static bfd_boolean get_stub (bfd *abfd, info, struct elf64_hppa_link_hash_table *hppa_info)
static bfd_boolean elf64_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
static bfd_boolean allocate_dynrel_entries (struct elf64_hppa_dyn_hash_entry *dyn_h, PTR data)
static bfd_boolean elf64_hppa_adjust_dynamic_symbol (info, struct elf_link_hash_entry *h)
static bfd_boolean elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *h, PTR data)
static bfd_boolean elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
static bfd_boolean elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info, const char *name, Elf_Internal_Sym *sym, input_sec, struct elf_link_hash_entry *h)
static bfd_boolean elf64_hppa_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym)
static bfd_boolean elf64_hppa_finalize_opd (struct elf64_hppa_dyn_hash_entry *dyn_h, PTR data)
static bfd_boolean elf64_hppa_finalize_dlt (struct elf64_hppa_dyn_hash_entry *dyn_h, PTR data)
static bfd_boolean elf64_hppa_finalize_dynreloc (struct elf64_hppa_dyn_hash_entry *dyn_h, PTR data)
static enum elf_reloc_type_class elf64_hppa_reloc_type_class (Elf_Internal_Rela *rela) const
static bfd_boolean elf64_hppa_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
static bfd_boolean elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
static bfd_boolean elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
static int elf64_hppa_additional_program_headers (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
static bfd_boolean elf64_hppa_modify_segment_map (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
static int elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
static bfd_boolean elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index, const char *typename)

Variables

static char plt_stub []
static struct bfd_elf_special_section []

Class Documentation

struct elf64_hppa_dyn_hash_entry

Definition at line 50 of file elf64-hppa.c.

Collaboration diagram for elf64_hppa_dyn_hash_entry:
Class Members
bfd_vma dlt_offset
struct elf_link_hash_entry * h
bfd_vma opd_offset
bfd * owner
bfd_vma plt_offset
struct elf64_hppa_dyn_reloc_entry * reloc_entries
int st_shndx
bfd_vma st_value
bfd_vma stub_offset
long sym_indx
unsigned want_dlt
unsigned want_opd
unsigned want_plt
unsigned want_stub
struct elf64_hppa_dyn_hash_entry::elf64_hppa_dyn_reloc_entry

Definition at line 80 of file elf64-hppa.c.

Collaboration diagram for elf64_hppa_dyn_hash_entry::elf64_hppa_dyn_reloc_entry:
Class Members
bfd_vma addend
struct elf64_hppa_dyn_reloc_entry * next
bfd_vma offset
asection * sec
int sec_symndx
int type
struct elf64_hppa_dyn_hash_table

Definition at line 111 of file elf64-hppa.c.

struct elf64_hppa_link_hash_table

Definition at line 116 of file elf64-hppa.c.

Collaboration diagram for elf64_hppa_link_hash_table:
Class Members
bfd_vma data_segment_base
asection * dlt_rel_sec
asection * dlt_sec
bfd_vma gp_offset
asection * opd_rel_sec
asection * opd_sec
asection * other_rel_sec
asection * plt_rel_sec
asection * plt_sec
int * section_syms
bfd * section_syms_bfd
asection * stub_sec
bfd_vma text_segment_base
struct elf64_hppa_allocate_data

Definition at line 949 of file elf64-hppa.c.

Collaboration diagram for elf64_hppa_allocate_data:
Class Members
struct bfd_link_info * info
bfd_size_type ofs

Define Documentation

#define add_dynamic_entry (   TAG,
  VAL 
)    _bfd_elf_add_dynamic_entry (info, TAG, VAL)
#define ARCH_SIZE   64

Definition at line 29 of file elf64-hppa.c.

#define bfd_elf64_bfd_final_link   elf_hppa_final_link

Definition at line 2813 of file elf64-hppa.c.

Definition at line 2800 of file elf64-hppa.c.

Definition at line 2835 of file elf64-hppa.c.

Definition at line 2799 of file elf64-hppa.c.

Definition at line 2798 of file elf64-hppa.c.

#define DLT_ENTRY_SIZE   0x8

Definition at line 32 of file elf64-hppa.c.

#define elf64_bed   elf64_hppa_hpux_bed

Definition at line 2878 of file elf64-hppa.c.

#define elf64_bed   elf64_hppa_linux_bed

Definition at line 2878 of file elf64-hppa.c.

#define elf64_hppa_hash_table (   p)    ((struct elf64_hppa_link_hash_table *) ((p)->hash))

Definition at line 154 of file elf64-hppa.c.

#define ELF_ARCH   bfd_arch_hppa

Definition at line 2791 of file elf64-hppa.c.

Definition at line 2862 of file elf64-hppa.c.

#define elf_backend_add_symbol_hook   elf_hppa_add_symbol_hook

Definition at line 2809 of file elf64-hppa.c.

Definition at line 2844 of file elf64-hppa.c.

Definition at line 2821 of file elf64-hppa.c.

Definition at line 2838 of file elf64-hppa.c.

Definition at line 2815 of file elf64-hppa.c.

Definition at line 2808 of file elf64-hppa.c.

Definition at line 2806 of file elf64-hppa.c.

Definition at line 2829 of file elf64-hppa.c.

Definition at line 2827 of file elf64-hppa.c.

Definition at line 2858 of file elf64-hppa.c.

Definition at line 2856 of file elf64-hppa.c.

Definition at line 2831 of file elf64-hppa.c.

Definition at line 2832 of file elf64-hppa.c.

Definition at line 2850 of file elf64-hppa.c.

Definition at line 2847 of file elf64-hppa.c.

Definition at line 2805 of file elf64-hppa.c.

Definition at line 2819 of file elf64-hppa.c.

#define elf_backend_plt_readonly   0

Definition at line 2854 of file elf64-hppa.c.

Definition at line 2876 of file elf64-hppa.c.

Definition at line 2876 of file elf64-hppa.c.

#define elf_backend_rela_normal   1

Definition at line 2860 of file elf64-hppa.c.

Definition at line 2859 of file elf64-hppa.c.

#define elf_backend_relocate_section   elf_hppa_relocate_section

Definition at line 2811 of file elf64-hppa.c.

Definition at line 2863 of file elf64-hppa.c.

Definition at line 2804 of file elf64-hppa.c.

Definition at line 2824 of file elf64-hppa.c.

#define elf_backend_size_info   hppa64_elf_size_info

Definition at line 2841 of file elf64-hppa.c.

#define elf_backend_special_sections   elf64_hppa_special_sections

Definition at line 2861 of file elf64-hppa.c.

Definition at line 2857 of file elf64-hppa.c.

#define elf_backend_want_got_plt   0

Definition at line 2853 of file elf64-hppa.c.

#define elf_backend_want_plt_sym   0

Definition at line 2855 of file elf64-hppa.c.

#define ELF_DYNAMIC_INTERPRETER   "/usr/lib/pa20_64/dld.sl"

Definition at line 35 of file elf64-hppa.c.

Definition at line 2801 of file elf64-hppa.c.

Definition at line 2802 of file elf64-hppa.c.

Definition at line 2792 of file elf64-hppa.c.

#define ELF_MAXPAGESIZE   0x1000

Definition at line 2795 of file elf64-hppa.c.

#define ELF_OSABI   ELFOSABI_HPUX

Definition at line 2874 of file elf64-hppa.c.

#define ELF_OSABI   ELFOSABI_LINUX

Definition at line 2874 of file elf64-hppa.c.

#define OPD_ENTRY_SIZE   0x20

Definition at line 33 of file elf64-hppa.c.

#define PLT_ENTRY_SIZE   0x10

Definition at line 31 of file elf64-hppa.c.

#define TARGET_BIG_NAME   "elf64-hppa"

Definition at line 2872 of file elf64-hppa.c.

#define TARGET_BIG_NAME   "elf64-hppa-linux"

Definition at line 2872 of file elf64-hppa.c.

Definition at line 2870 of file elf64-hppa.c.

Definition at line 2870 of file elf64-hppa.c.


Typedef Documentation

Definition at line 158 of file elf64-hppa.c.


Function Documentation

static bfd_boolean allocate_dynrel_entries ( struct elf64_hppa_dyn_hash_entry dyn_h,
PTR  data 
) [static]

Definition at line 1465 of file elf64-hppa.c.

{
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_dyn_reloc_entry *rent;
  bfd_boolean dynamic_symbol, shared;

  hppa_info = elf64_hppa_hash_table (x->info);
  dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
  shared = x->info->shared;

  /* We may need to allocate relocations for a non-dynamic symbol
     when creating a shared library.  */
  if (!dynamic_symbol && !shared)
    return TRUE;

  /* Take care of the normal data relocations.  */

  for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
    {
      /* Allocate one iff we are building a shared library, the relocation
        isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
      if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
       continue;

      hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);

      /* Make sure this symbol gets into the dynamic symbol table if it is
        not already recorded.  ?!? This should not be in the loop since
        the symbol need only be added once.  */
      if (dyn_h->h == 0
         || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
       if (!bfd_elf_link_record_local_dynamic_symbol
           (x->info, rent->sec->owner, dyn_h->sym_indx))
         return FALSE;
    }

  /* Take care of the GOT and PLT relocations.  */

  if ((dynamic_symbol || shared) && dyn_h->want_dlt)
    hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);

  /* If we are building a shared library, then every symbol that has an
     opd entry will need an EPLT relocation to relocate the symbol's address
     and __gp value based on the runtime load address.  */
  if (shared && dyn_h->want_opd)
    hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);

  if (dyn_h->want_plt && dynamic_symbol)
    {
      bfd_size_type t = 0;

      /* Dynamic symbols get one IPLT relocation.  Local symbols in
        shared libraries get two REL relocations.  Local symbols in
        main applications get nothing.  */
      if (dynamic_symbol)
       t = sizeof (Elf64_External_Rela);
      else if (shared)
       t = 2 * sizeof (Elf64_External_Rela);

      hppa_info->plt_rel_sec->size += t;
    }

  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean allocate_global_data_dlt ( struct elf64_hppa_dyn_hash_entry dyn_h,
PTR  data 
) [static]

Definition at line 1023 of file elf64-hppa.c.

{
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;

  if (dyn_h->want_dlt)
    {
      struct elf_link_hash_entry *h = dyn_h->h;

      if (x->info->shared)
       {
         /* Possibly add the symbol to the local dynamic symbol
            table since we might need to create a dynamic relocation
            against it.  */
         if (! h
             || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
           {
             bfd *owner;
             owner = (h ? h->root.u.def.section->owner : dyn_h->owner);

             if (! (bfd_elf_link_record_local_dynamic_symbol
                   (x->info, owner, dyn_h->sym_indx)))
              return FALSE;
           }
       }

      dyn_h->dlt_offset = x->ofs;
      x->ofs += DLT_ENTRY_SIZE;
    }
  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean allocate_global_data_opd ( struct elf64_hppa_dyn_hash_entry dyn_h,
PTR  data 
) [static]

Definition at line 1108 of file elf64-hppa.c.

{
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;

  if (dyn_h->want_opd)
    {
      struct elf_link_hash_entry *h = dyn_h->h;

      if (h)
       while (h->root.type == bfd_link_hash_indirect
              || h->root.type == bfd_link_hash_warning)
         h = (struct elf_link_hash_entry *) h->root.u.i.link;

      /* We never need an opd entry for a symbol which is not
        defined by this output file.  */
      if (h && (h->root.type == bfd_link_hash_undefined
              || h->root.type == bfd_link_hash_undefweak
              || h->root.u.def.section->output_section == NULL))
       dyn_h->want_opd = 0;

      /* If we are creating a shared library, took the address of a local
        function or might export this function from this object file, then
        we have to create an opd descriptor.  */
      else if (x->info->shared
              || h == NULL
              || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
              || (h->root.type == bfd_link_hash_defined
                 || h->root.type == bfd_link_hash_defweak))
       {
         /* If we are creating a shared library, then we will have to
            create a runtime relocation for the symbol to properly
            initialize the .opd entry.  Make sure the symbol gets
            added to the dynamic symbol table.  */
         if (x->info->shared
             && (h == NULL || (h->dynindx == -1)))
           {
             bfd *owner;
             owner = (h ? h->root.u.def.section->owner : dyn_h->owner);

             if (!bfd_elf_link_record_local_dynamic_symbol
                  (x->info, owner, dyn_h->sym_indx))
              return FALSE;
           }

         /* This may not be necessary or desirable anymore now that
            we have some support for dealing with section symbols
            in dynamic relocs.  But name munging does make the result
            much easier to debug.  ie, the EPLT reloc will reference
            a symbol like .foobar, instead of .text + offset.  */
         if (x->info->shared && h)
           {
             char *new_name;
             struct elf_link_hash_entry *nh;

             new_name = alloca (strlen (h->root.root.string) + 2);
             new_name[0] = '.';
             strcpy (new_name + 1, h->root.root.string);

             nh = elf_link_hash_lookup (elf_hash_table (x->info),
                                    new_name, TRUE, TRUE, TRUE);

             nh->root.type = h->root.type;
             nh->root.u.def.value = h->root.u.def.value;
             nh->root.u.def.section = h->root.u.def.section;

             if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
              return FALSE;

            }
         dyn_h->opd_offset = x->ofs;
         x->ofs += OPD_ENTRY_SIZE;
       }

      /* Otherwise we do not need an opd entry.  */
      else
       dyn_h->want_opd = 0;
    }
  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean allocate_global_data_plt ( struct elf64_hppa_dyn_hash_entry dyn_h,
PTR  data 
) [static]

Definition at line 1059 of file elf64-hppa.c.

{
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;

  if (dyn_h->want_plt
      && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
      && !((dyn_h->h->root.type == bfd_link_hash_defined
           || dyn_h->h->root.type == bfd_link_hash_defweak)
          && dyn_h->h->root.u.def.section->output_section != NULL))
    {
      dyn_h->plt_offset = x->ofs;
      x->ofs += PLT_ENTRY_SIZE;
      if (dyn_h->plt_offset < 0x2000)
       elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
    }
  else
    dyn_h->want_plt = 0;

  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

Definition at line 1085 of file elf64-hppa.c.

{
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;

  if (dyn_h->want_stub
      && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
      && !((dyn_h->h->root.type == bfd_link_hash_defined
           || dyn_h->h->root.type == bfd_link_hash_defweak)
          && dyn_h->h->root.u.def.section->output_section != NULL))
    {
      dyn_h->stub_offset = x->ofs;
      x->ofs += sizeof (plt_stub);
    }
  else
    dyn_h->want_stub = 0;
  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean count_dyn_reloc ( bfd abfd,
struct elf64_hppa_dyn_hash_entry dyn_h,
int  type,
asection sec,
int  sec_symndx,
bfd_vma  offset,
bfd_vma  addend 
) [static]

Definition at line 557 of file elf64-hppa.c.

{
  struct elf64_hppa_dyn_reloc_entry *rent;

  rent = (struct elf64_hppa_dyn_reloc_entry *)
  bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
  if (!rent)
    return FALSE;

  rent->next = dyn_h->reloc_entries;
  rent->type = type;
  rent->sec = sec;
  rent->sec_symndx = sec_symndx;
  rent->offset = offset;
  rent->addend = addend;
  dyn_h->reloc_entries = rent;

  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static int elf64_hppa_additional_program_headers ( bfd abfd,
struct bfd_link_info *info  ATTRIBUTE_UNUSED 
) [static]

Definition at line 2607 of file elf64-hppa.c.

{
  asection *s;

  /* If we are creating a shared library, then we have to create a
     PT_PHDR segment.  HP's dynamic linker chokes without it.  */
  s = bfd_get_section_by_name (abfd, ".interp");
  if (! s)
    return 1;
  return 0;
}

Here is the call graph for this function:

Definition at line 1537 of file elf64-hppa.c.

{
  /* ??? Undefined symbols with PLT entries should be re-defined
     to be the PLT entry.  */

  /* If this is a weak symbol, and there is a real definition, the
     processor independent code will have arranged for us to see the
     real definition first, and we can just use the same value.  */
  if (h->u.weakdef != NULL)
    {
      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
                || h->u.weakdef->root.type == bfd_link_hash_defweak);
      h->root.u.def.section = h->u.weakdef->root.u.def.section;
      h->root.u.def.value = h->u.weakdef->root.u.def.value;
      return TRUE;
    }

  /* If this is a reference to a symbol defined by a dynamic object which
     is not a function, we might allocate the symbol in our .dynbss section
     and allocate a COPY dynamic relocation.

     But PA64 code is canonically PIC, so as a rule we can avoid this sort
     of hackery.  */

  return TRUE;
}
static bfd_boolean elf64_hppa_check_relocs ( bfd abfd,
struct bfd_link_info info,
asection sec,
const Elf_Internal_Rela relocs 
) [static]

Definition at line 588 of file elf64-hppa.c.

{
  struct elf64_hppa_link_hash_table *hppa_info;
  const Elf_Internal_Rela *relend;
  Elf_Internal_Shdr *symtab_hdr;
  const Elf_Internal_Rela *rel;
  asection *dlt, *plt, *stubs;
  char *buf;
  size_t buf_len;
  int sec_symndx;

  if (info->relocatable)
    return TRUE;

  /* If this is the first dynamic object found in the link, create
     the special sections required for dynamic linking.  */
  if (! elf_hash_table (info)->dynamic_sections_created)
    {
      if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
       return FALSE;
    }

  hppa_info = elf64_hppa_hash_table (info);
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;

  /* If necessary, build a new table holding section symbols indices
     for this BFD.  */

  if (info->shared && hppa_info->section_syms_bfd != abfd)
    {
      unsigned long i;
      unsigned int highest_shndx;
      Elf_Internal_Sym *local_syms = NULL;
      Elf_Internal_Sym *isym, *isymend;
      bfd_size_type amt;

      /* We're done with the old cache of section index to section symbol
        index information.  Free it.

        ?!? Note we leak the last section_syms array.  Presumably we
        could free it in one of the later routines in this file.  */
      if (hppa_info->section_syms)
       free (hppa_info->section_syms);

      /* Read this BFD's local symbols.  */
      if (symtab_hdr->sh_info != 0)
       {
         local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
         if (local_syms == NULL)
           local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
                                          symtab_hdr->sh_info, 0,
                                          NULL, NULL, NULL);
         if (local_syms == NULL)
           return FALSE;
       }

      /* Record the highest section index referenced by the local symbols.  */
      highest_shndx = 0;
      isymend = local_syms + symtab_hdr->sh_info;
      for (isym = local_syms; isym < isymend; isym++)
       {
         if (isym->st_shndx > highest_shndx)
           highest_shndx = isym->st_shndx;
       }

      /* Allocate an array to hold the section index to section symbol index
        mapping.  Bump by one since we start counting at zero.  */
      highest_shndx++;
      amt = highest_shndx;
      amt *= sizeof (int);
      hppa_info->section_syms = (int *) bfd_malloc (amt);

      /* Now walk the local symbols again.  If we find a section symbol,
        record the index of the symbol into the section_syms array.  */
      for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
       {
         if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
           hppa_info->section_syms[isym->st_shndx] = i;
       }

      /* We are finished with the local symbols.  */
      if (local_syms != NULL
         && symtab_hdr->contents != (unsigned char *) local_syms)
       {
         if (! info->keep_memory)
           free (local_syms);
         else
           {
             /* Cache the symbols for elf_link_input_bfd.  */
             symtab_hdr->contents = (unsigned char *) local_syms;
           }
       }

      /* Record which BFD we built the section_syms mapping for.  */
      hppa_info->section_syms_bfd = abfd;
    }

  /* Record the symbol index for this input section.  We may need it for
     relocations when building shared libraries.  When not building shared
     libraries this value is never really used, but assign it to zero to
     prevent out of bounds memory accesses in other routines.  */
  if (info->shared)
    {
      sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);

      /* If we did not find a section symbol for this section, then
        something went terribly wrong above.  */
      if (sec_symndx == -1)
       return FALSE;

      sec_symndx = hppa_info->section_syms[sec_symndx];
    }
  else
    sec_symndx = 0;

  dlt = plt = stubs = NULL;
  buf = NULL;
  buf_len = 0;

  relend = relocs + sec->reloc_count;
  for (rel = relocs; rel < relend; ++rel)
    {
      enum
       {
         NEED_DLT = 1,
         NEED_PLT = 2,
         NEED_STUB = 4,
         NEED_OPD = 8,
         NEED_DYNREL = 16,
       };

      struct elf_link_hash_entry *h = NULL;
      unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
      struct elf64_hppa_dyn_hash_entry *dyn_h;
      int need_entry;
      const char *addr_name;
      bfd_boolean maybe_dynamic;
      int dynrel_type = R_PARISC_NONE;
      static reloc_howto_type *howto;

      if (r_symndx >= symtab_hdr->sh_info)
       {
         /* We're dealing with a global symbol -- find its hash entry
            and mark it as being referenced.  */
         long indx = r_symndx - symtab_hdr->sh_info;
         h = elf_sym_hashes (abfd)[indx];
         while (h->root.type == bfd_link_hash_indirect
               || h->root.type == bfd_link_hash_warning)
           h = (struct elf_link_hash_entry *) h->root.u.i.link;

         h->ref_regular = 1;
       }

      /* We can only get preliminary data on whether a symbol is
        locally or externally defined, as not all of the input files
        have yet been processed.  Do something with what we know, as
        this may help reduce memory usage and processing time later.  */
      maybe_dynamic = FALSE;
      if (h && ((info->shared
               && (!info->symbolic
                   || info->unresolved_syms_in_shared_libs == RM_IGNORE))
              || !h->def_regular
              || h->root.type == bfd_link_hash_defweak))
       maybe_dynamic = TRUE;

      howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
      need_entry = 0;
      switch (howto->type)
       {
       /* These are simple indirect references to symbols through the
          DLT.  We need to create a DLT entry for any symbols which
          appears in a DLTIND relocation.  */
       case R_PARISC_DLTIND21L:
       case R_PARISC_DLTIND14R:
       case R_PARISC_DLTIND14F:
       case R_PARISC_DLTIND14WR:
       case R_PARISC_DLTIND14DR:
         need_entry = NEED_DLT;
         break;

       /* ?!?  These need a DLT entry.  But I have no idea what to do with
          the "link time TP value.  */
       case R_PARISC_LTOFF_TP21L:
       case R_PARISC_LTOFF_TP14R:
       case R_PARISC_LTOFF_TP14F:
       case R_PARISC_LTOFF_TP64:
       case R_PARISC_LTOFF_TP14WR:
       case R_PARISC_LTOFF_TP14DR:
       case R_PARISC_LTOFF_TP16F:
       case R_PARISC_LTOFF_TP16WF:
       case R_PARISC_LTOFF_TP16DF:
         need_entry = NEED_DLT;
         break;

       /* These are function calls.  Depending on their precise target we
          may need to make a stub for them.  The stub uses the PLT, so we
          need to create PLT entries for these symbols too.  */
       case R_PARISC_PCREL12F:
       case R_PARISC_PCREL17F:
       case R_PARISC_PCREL22F:
       case R_PARISC_PCREL32:
       case R_PARISC_PCREL64:
       case R_PARISC_PCREL21L:
       case R_PARISC_PCREL17R:
       case R_PARISC_PCREL17C:
       case R_PARISC_PCREL14R:
       case R_PARISC_PCREL14F:
       case R_PARISC_PCREL22C:
       case R_PARISC_PCREL14WR:
       case R_PARISC_PCREL14DR:
       case R_PARISC_PCREL16F:
       case R_PARISC_PCREL16WF:
       case R_PARISC_PCREL16DF:
         need_entry = (NEED_PLT | NEED_STUB);
         break;

       case R_PARISC_PLTOFF21L:
       case R_PARISC_PLTOFF14R:
       case R_PARISC_PLTOFF14F:
       case R_PARISC_PLTOFF14WR:
       case R_PARISC_PLTOFF14DR:
       case R_PARISC_PLTOFF16F:
       case R_PARISC_PLTOFF16WF:
       case R_PARISC_PLTOFF16DF:
         need_entry = (NEED_PLT);
         break;

       case R_PARISC_DIR64:
         if (info->shared || maybe_dynamic)
           need_entry = (NEED_DYNREL);
         dynrel_type = R_PARISC_DIR64;
         break;

       /* This is an indirect reference through the DLT to get the address
          of a OPD descriptor.  Thus we need to make a DLT entry that points
          to an OPD entry.  */
       case R_PARISC_LTOFF_FPTR21L:
       case R_PARISC_LTOFF_FPTR14R:
       case R_PARISC_LTOFF_FPTR14WR:
       case R_PARISC_LTOFF_FPTR14DR:
       case R_PARISC_LTOFF_FPTR32:
       case R_PARISC_LTOFF_FPTR64:
       case R_PARISC_LTOFF_FPTR16F:
       case R_PARISC_LTOFF_FPTR16WF:
       case R_PARISC_LTOFF_FPTR16DF:
         if (info->shared || maybe_dynamic)
           need_entry = (NEED_DLT | NEED_OPD);
         else
           need_entry = (NEED_DLT | NEED_OPD);
         dynrel_type = R_PARISC_FPTR64;
         break;

       /* This is a simple OPD entry.  */
       case R_PARISC_FPTR64:
         if (info->shared || maybe_dynamic)
           need_entry = (NEED_OPD | NEED_DYNREL);
         else
           need_entry = (NEED_OPD);
         dynrel_type = R_PARISC_FPTR64;
         break;

       /* Add more cases as needed.  */
       }

      if (!need_entry)
       continue;

      /* Collect a canonical name for this address.  */
      addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);

      /* Collect the canonical entry data for this address.  */
      dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
                                     addr_name, TRUE, TRUE);
      BFD_ASSERT (dyn_h);

      /* Stash away enough information to be able to find this symbol
        regardless of whether or not it is local or global.  */
      dyn_h->h = h;
      dyn_h->owner = abfd;
      dyn_h->sym_indx = r_symndx;

      /* ?!? We may need to do some error checking in here.  */
      /* Create what's needed.  */
      if (need_entry & NEED_DLT)
       {
         if (! hppa_info->dlt_sec
             && ! get_dlt (abfd, info, hppa_info))
           goto err_out;
         dyn_h->want_dlt = 1;
       }

      if (need_entry & NEED_PLT)
       {
         if (! hppa_info->plt_sec
             && ! get_plt (abfd, info, hppa_info))
           goto err_out;
         dyn_h->want_plt = 1;
       }

      if (need_entry & NEED_STUB)
       {
         if (! hppa_info->stub_sec
             && ! get_stub (abfd, info, hppa_info))
           goto err_out;
         dyn_h->want_stub = 1;
       }

      if (need_entry & NEED_OPD)
       {
         if (! hppa_info->opd_sec
             && ! get_opd (abfd, info, hppa_info))
           goto err_out;

         dyn_h->want_opd = 1;

         /* FPTRs are not allocated by the dynamic linker for PA64, though
            it is possible that will change in the future.  */

         /* This could be a local function that had its address taken, in
            which case H will be NULL.  */
         if (h)
           h->needs_plt = 1;
       }

      /* Add a new dynamic relocation to the chain of dynamic
        relocations for this symbol.  */
      if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
       {
         if (! hppa_info->other_rel_sec
             && ! get_reloc_section (abfd, hppa_info, sec))
           goto err_out;

         if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
                            sec_symndx, rel->r_offset, rel->r_addend))
           goto err_out;

         /* If we are building a shared library and we just recorded
            a dynamic R_PARISC_FPTR64 relocation, then make sure the
            section symbol for this section ends up in the dynamic
            symbol table.  */
         if (info->shared && dynrel_type == R_PARISC_FPTR64
             && ! (bfd_elf_link_record_local_dynamic_symbol
                  (info, abfd, sec_symndx)))
           return FALSE;
       }
    }

  if (buf)
    free (buf);
  return TRUE;

 err_out:
  if (buf)
    free (buf);
  return FALSE;
}

Here is the call graph for this function:

static bfd_boolean elf64_hppa_create_dynamic_sections ( bfd abfd,
struct bfd_link_info info 
) [static]

Definition at line 1396 of file elf64-hppa.c.

{
  asection *s;

  if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
    return FALSE;

  if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
    return FALSE;

  if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
    return FALSE;

  if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
    return FALSE;

  s = bfd_make_section_with_flags (abfd, ".rela.dlt",
                               (SEC_ALLOC | SEC_LOAD
                                | SEC_HAS_CONTENTS
                                | SEC_IN_MEMORY
                                | SEC_READONLY
                                | SEC_LINKER_CREATED));
  if (s == NULL
      || !bfd_set_section_alignment (abfd, s, 3))
    return FALSE;
  elf64_hppa_hash_table (info)->dlt_rel_sec = s;

  s = bfd_make_section_with_flags (abfd, ".rela.plt",
                               (SEC_ALLOC | SEC_LOAD
                                | SEC_HAS_CONTENTS
                                | SEC_IN_MEMORY
                                | SEC_READONLY
                                | SEC_LINKER_CREATED));
  if (s == NULL
      || !bfd_set_section_alignment (abfd, s, 3))
    return FALSE;
  elf64_hppa_hash_table (info)->plt_rel_sec = s;

  s = bfd_make_section_with_flags (abfd, ".rela.data",
                               (SEC_ALLOC | SEC_LOAD
                                | SEC_HAS_CONTENTS
                                | SEC_IN_MEMORY
                                | SEC_READONLY
                                | SEC_LINKER_CREATED));
  if (s == NULL
      || !bfd_set_section_alignment (abfd, s, 3))
    return FALSE;
  elf64_hppa_hash_table (info)->other_rel_sec = s;

  s = bfd_make_section_with_flags (abfd, ".rela.opd",
                               (SEC_ALLOC | SEC_LOAD
                                | SEC_HAS_CONTENTS
                                | SEC_IN_MEMORY
                                | SEC_READONLY
                                | SEC_LINKER_CREATED));
  if (s == NULL
      || !bfd_set_section_alignment (abfd, s, 3))
    return FALSE;
  elf64_hppa_hash_table (info)->opd_rel_sec = s;

  return TRUE;
}

Here is the call graph for this function:

static struct elf64_hppa_dyn_hash_entry* elf64_hppa_dyn_hash_lookup ( struct elf64_hppa_dyn_hash_table table,
const char *  string,
bfd_boolean  create,
bfd_boolean  copy 
) [static, read]

Definition at line 339 of file elf64-hppa.c.

{
  return ((struct elf64_hppa_dyn_hash_entry *)
         bfd_hash_lookup (&table->root, string, create, copy));
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean elf64_hppa_dyn_hash_table_init ( struct elf64_hppa_dyn_hash_table ht,
bfd *abfd  ATTRIBUTE_UNUSED,
new_hash_entry_func  new,
unsigned int  entsize 
) [static]

Definition at line 270 of file elf64-hppa.c.

{
  memset (ht, 0, sizeof (*ht));
  return bfd_hash_table_init (&ht->root, new, entsize);
}

Here is the call graph for this function:

Here is the caller graph for this function:

static void elf64_hppa_dyn_hash_traverse ( struct elf64_hppa_dyn_hash_table table,
bfd_boolean func,
PTR  info 
) [static]

Definition at line 351 of file elf64-hppa.c.

{
  (bfd_hash_traverse
   (&table->root,
    (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
    info));
}

Here is the call graph for this function:

Here is the caller graph for this function:

Definition at line 958 of file elf64-hppa.c.

{
  /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
     and relocations that retrieve a function descriptor?  Assume the
     worst for now.  */
  if (_bfd_elf_dynamic_symbol_p (h, info, 1))
    {
      /* ??? Why is this here and not elsewhere is_local_label_name.  */
      if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
       return FALSE;

      return TRUE;
    }
  else
    return FALSE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static int elf64_hppa_elf_get_symbol_type ( Elf_Internal_Sym *  elf_sym,
int  type 
) [static]

Definition at line 2688 of file elf64-hppa.c.

{
  if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
    return STT_PARISC_MILLI;
  else
    return type;
}
static bfd_boolean elf64_hppa_finalize_dlt ( struct elf64_hppa_dyn_hash_entry dyn_h,
PTR  data 
) [static]

Definition at line 2191 of file elf64-hppa.c.

{
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct elf64_hppa_link_hash_table *hppa_info;
  asection *sdlt, *sdltrel;
  struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;

  hppa_info = elf64_hppa_hash_table (info);

  sdlt = hppa_info->dlt_sec;
  sdltrel = hppa_info->dlt_rel_sec;

  /* H/DYN_H may refer to a local variable and we know it's
     address, so there is no need to create a relocation.  Just install
     the proper value into the DLT, note this shortcut can not be
     skipped when building a shared library.  */
  if (! info->shared && h && dyn_h->want_dlt)
    {
      bfd_vma value;

      /* If we had an LTOFF_FPTR style relocation we want the DLT entry
        to point to the FPTR entry in the .opd section.

        We include the OPD's output offset in this computation as
        we are referring to an absolute address in the resulting
        object file.  */
      if (dyn_h->want_opd)
       {
         value = (dyn_h->opd_offset
                 + hppa_info->opd_sec->output_offset
                 + hppa_info->opd_sec->output_section->vma);
       }
      else if ((h->root.type == bfd_link_hash_defined
              || h->root.type == bfd_link_hash_defweak)
              && h->root.u.def.section)
       {
         value = h->root.u.def.value + h->root.u.def.section->output_offset;
         if (h->root.u.def.section->output_section)
           value += h->root.u.def.section->output_section->vma;
         else
           value += h->root.u.def.section->vma;
       }
      else
       /* We have an undefined function reference.  */
       value = 0;

      /* We do not need to include the output offset of the DLT section
        here because we are modifying the in-memory contents.  */
      bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
    }

  /* Create a relocation for the DLT entry associated with this symbol.
     When building a shared library the symbol does not have to be dynamic.  */
  if (dyn_h->want_dlt
      && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
    {
      Elf_Internal_Rela rel;
      bfd_byte *loc;
      int dynindx;

      /* We may need to do a relocation against a local symbol, in
        which case we have to look up it's dynamic symbol index off
        the local symbol hash table.  */
      if (h && h->dynindx != -1)
       dynindx = h->dynindx;
      else
       dynindx
         = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
                                          dyn_h->sym_indx);

      /* Create a dynamic relocation for this entry.  Do include the output
        offset of the DLT entry since we need an absolute address in the
        resulting object file.  */
      rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
                    + sdlt->output_section->vma);
      if (h && h->type == STT_FUNC)
         rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
      else
         rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
      rel.r_addend = 0;

      loc = sdltrel->contents;
      loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
      bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
    }
  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

Definition at line 2285 of file elf64-hppa.c.

{
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf_link_hash_entry *h;
  int dynamic_symbol;

  dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);

  if (!dynamic_symbol && !info->shared)
    return TRUE;

  if (dyn_h->reloc_entries)
    {
      struct elf64_hppa_dyn_reloc_entry *rent;
      int dynindx;

      hppa_info = elf64_hppa_hash_table (info);
      h = dyn_h->h;

      /* We may need to do a relocation against a local symbol, in
        which case we have to look up it's dynamic symbol index off
        the local symbol hash table.  */
      if (h && h->dynindx != -1)
       dynindx = h->dynindx;
      else
       dynindx
         = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
                                          dyn_h->sym_indx);

      for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
       {
         Elf_Internal_Rela rel;
         bfd_byte *loc;

         /* Allocate one iff we are building a shared library, the relocation
            isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
         if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
           continue;

         /* Create a dynamic relocation for this entry.

            We need the output offset for the reloc's section because
            we are creating an absolute address in the resulting object
            file.  */
         rel.r_offset = (rent->offset + rent->sec->output_offset
                       + rent->sec->output_section->vma);

         /* An FPTR64 relocation implies that we took the address of
            a function and that the function has an entry in the .opd
            section.  We want the FPTR64 relocation to reference the
            entry in .opd.

            We could munge the symbol value in the dynamic symbol table
            (in fact we already do for functions with global scope) to point
            to the .opd entry.  Then we could use that dynamic symbol in
            this relocation.

            Or we could do something sensible, not munge the symbol's
            address and instead just use a different symbol to reference
            the .opd entry.  At least that seems sensible until you
            realize there's no local dynamic symbols we can use for that
            purpose.  Thus the hair in the check_relocs routine.

            We use a section symbol recorded by check_relocs as the
            base symbol for the relocation.  The addend is the difference
            between the section symbol and the address of the .opd entry.  */
         if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
           {
             bfd_vma value, value2;

             /* First compute the address of the opd entry for this symbol.  */
             value = (dyn_h->opd_offset
                     + hppa_info->opd_sec->output_section->vma
                     + hppa_info->opd_sec->output_offset);

             /* Compute the value of the start of the section with
               the relocation.  */
             value2 = (rent->sec->output_section->vma
                     + rent->sec->output_offset);

             /* Compute the difference between the start of the section
               with the relocation and the opd entry.  */
             value -= value2;

             /* The result becomes the addend of the relocation.  */
             rel.r_addend = value;

             /* The section symbol becomes the symbol for the dynamic
               relocation.  */
             dynindx
              = _bfd_elf_link_lookup_local_dynindx (info,
                                                rent->sec->owner,
                                                rent->sec_symndx);
           }
         else
           rel.r_addend = rent->addend;

         rel.r_info = ELF64_R_INFO (dynindx, rent->type);

         loc = hppa_info->other_rel_sec->contents;
         loc += (hppa_info->other_rel_sec->reloc_count++
                * sizeof (Elf64_External_Rela));
         bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
                                 &rel, loc);
       }
    }

  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean elf64_hppa_finalize_opd ( struct elf64_hppa_dyn_hash_entry dyn_h,
PTR  data 
) [static]

Definition at line 2072 of file elf64-hppa.c.

{
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
  asection *sopd;
  asection *sopdrel;

  hppa_info = elf64_hppa_hash_table (info);
  sopd = hppa_info->opd_sec;
  sopdrel = hppa_info->opd_rel_sec;

  if (h && dyn_h->want_opd)
    {
      bfd_vma value;

      /* The first two words of an .opd entry are zero.

        We are modifying the contents of the OPD section in memory, so we
        do not need to include its output offset in this computation.  */
      memset (sopd->contents + dyn_h->opd_offset, 0, 16);

      value = (h->root.u.def.value
              + h->root.u.def.section->output_section->vma
              + h->root.u.def.section->output_offset);

      /* The next word is the address of the function.  */
      bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);

      /* The last word is our local __gp value.  */
      value = _bfd_get_gp_value (sopd->output_section->owner);
      bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
    }

  /* If we are generating a shared library, we must generate EPLT relocations
     for each entry in the .opd, even for static functions (they may have
     had their address taken).  */
  if (info->shared && dyn_h && dyn_h->want_opd)
    {
      Elf_Internal_Rela rel;
      bfd_byte *loc;
      int dynindx;

      /* We may need to do a relocation against a local symbol, in
        which case we have to look up it's dynamic symbol index off
        the local symbol hash table.  */
      if (h && h->dynindx != -1)
       dynindx = h->dynindx;
      else
       dynindx
         = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
                                          dyn_h->sym_indx);

      /* The offset of this relocation is the absolute address of the
        .opd entry for this symbol.  */
      rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
                    + sopd->output_section->vma);

      /* If H is non-null, then we have an external symbol.

        It is imperative that we use a different dynamic symbol for the
        EPLT relocation if the symbol has global scope.

        In the dynamic symbol table, the function symbol will have a value
        which is address of the function's .opd entry.

        Thus, we can not use that dynamic symbol for the EPLT relocation
        (if we did, the data in the .opd would reference itself rather
        than the actual address of the function).  Instead we have to use
        a new dynamic symbol which has the same value as the original global
        function symbol.

        We prefix the original symbol with a "." and use the new symbol in
        the EPLT relocation.  This new symbol has already been recorded in
        the symbol table, we just have to look it up and use it.

        We do not have such problems with static functions because we do
        not make their addresses in the dynamic symbol table point to
        the .opd entry.  Ultimately this should be safe since a static
        function can not be directly referenced outside of its shared
        library.

        We do have to play similar games for FPTR relocations in shared
        libraries, including those for static symbols.  See the FPTR
        handling in elf64_hppa_finalize_dynreloc.  */
      if (h)
       {
         char *new_name;
         struct elf_link_hash_entry *nh;

         new_name = alloca (strlen (h->root.root.string) + 2);
         new_name[0] = '.';
         strcpy (new_name + 1, h->root.root.string);

         nh = elf_link_hash_lookup (elf_hash_table (info),
                                 new_name, FALSE, FALSE, FALSE);

         /* All we really want from the new symbol is its dynamic
            symbol index.  */
         dynindx = nh->dynindx;
       }

      rel.r_addend = 0;
      rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);

      loc = sopdrel->contents;
      loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
      bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
    }
  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean elf64_hppa_finish_dynamic_sections ( bfd output_bfd,
struct bfd_link_info info 
) [static]

Definition at line 2422 of file elf64-hppa.c.

{
  bfd *dynobj;
  asection *sdyn;
  struct elf64_hppa_link_hash_table *hppa_info;

  hppa_info = elf64_hppa_hash_table (info);

  /* Finalize the contents of the .opd section.  */
  elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
                            elf64_hppa_finalize_opd,
                            info);

  elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
                            elf64_hppa_finalize_dynreloc,
                            info);

  /* Finalize the contents of the .dlt section.  */
  dynobj = elf_hash_table (info)->dynobj;
  /* Finalize the contents of the .dlt section.  */
  elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
                            elf64_hppa_finalize_dlt,
                            info);

  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");

  if (elf_hash_table (info)->dynamic_sections_created)
    {
      Elf64_External_Dyn *dyncon, *dynconend;

      BFD_ASSERT (sdyn != NULL);

      dyncon = (Elf64_External_Dyn *) sdyn->contents;
      dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
      for (; dyncon < dynconend; dyncon++)
       {
         Elf_Internal_Dyn dyn;
         asection *s;

         bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);

         switch (dyn.d_tag)
           {
           default:
             break;

           case DT_HP_LOAD_MAP:
             /* Compute the absolute address of 16byte scratchpad area
               for the dynamic linker.

               By convention the linker script will allocate the scratchpad
               area at the start of the .data section.  So all we have to
               to is find the start of the .data section.  */
             s = bfd_get_section_by_name (output_bfd, ".data");
             dyn.d_un.d_ptr = s->vma;
             bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
             break;

           case DT_PLTGOT:
             /* HP's use PLTGOT to set the GOT register.  */
             dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
             bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
             break;

           case DT_JMPREL:
             s = hppa_info->plt_rel_sec;
             dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
             bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
             break;

           case DT_PLTRELSZ:
             s = hppa_info->plt_rel_sec;
             dyn.d_un.d_val = s->size;
             bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
             break;

           case DT_RELA:
             s = hppa_info->other_rel_sec;
             if (! s || ! s->size)
              s = hppa_info->dlt_rel_sec;
             if (! s || ! s->size)
              s = hppa_info->opd_rel_sec;
             dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
             bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
             break;

           case DT_RELASZ:
             s = hppa_info->other_rel_sec;
             dyn.d_un.d_val = s->size;
             s = hppa_info->dlt_rel_sec;
             dyn.d_un.d_val += s->size;
             s = hppa_info->opd_rel_sec;
             dyn.d_un.d_val += s->size;
             /* There is some question about whether or not the size of
               the PLT relocs should be included here.  HP's tools do
               it, so we'll emulate them.  */
             s = hppa_info->plt_rel_sec;
             dyn.d_un.d_val += s->size;
             bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
             break;

           }
       }
    }

  return TRUE;
}

Here is the call graph for this function:

static bfd_boolean elf64_hppa_finish_dynamic_symbol ( bfd output_bfd,
struct bfd_link_info info,
struct elf_link_hash_entry h,
Elf_Internal_Sym *  sym 
) [static]

Definition at line 1897 of file elf64-hppa.c.

{
  asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_dyn_hash_entry *dyn_h;

  hppa_info = elf64_hppa_hash_table (info);
  dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
                                  h->root.root.string, FALSE, FALSE);

  stub = hppa_info->stub_sec;
  splt = hppa_info->plt_sec;
  sdlt = hppa_info->dlt_sec;
  sopd = hppa_info->opd_sec;
  spltrel = hppa_info->plt_rel_sec;
  sdltrel = hppa_info->dlt_rel_sec;

  /* Incredible.  It is actually necessary to NOT use the symbol's real
     value when building the dynamic symbol table for a shared library.
     At least for symbols that refer to functions.

     We will store a new value and section index into the symbol long
     enough to output it into the dynamic symbol table, then we restore
     the original values (in elf64_hppa_link_output_symbol_hook).  */
  if (dyn_h && dyn_h->want_opd)
    {
      BFD_ASSERT (sopd != NULL);

      /* Save away the original value and section index so that we
        can restore them later.  */
      dyn_h->st_value = sym->st_value;
      dyn_h->st_shndx = sym->st_shndx;

      /* For the dynamic symbol table entry, we want the value to be
        address of this symbol's entry within the .opd section.  */
      sym->st_value = (dyn_h->opd_offset
                     + sopd->output_offset
                     + sopd->output_section->vma);
      sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
                                                  sopd->output_section);
    }

  /* Initialize a .plt entry if requested.  */
  if (dyn_h && dyn_h->want_plt
      && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
    {
      bfd_vma value;
      Elf_Internal_Rela rel;
      bfd_byte *loc;

      BFD_ASSERT (splt != NULL && spltrel != NULL);

      /* We do not actually care about the value in the PLT entry
        if we are creating a shared library and the symbol is
        still undefined, we create a dynamic relocation to fill
        in the correct value.  */
      if (info->shared && h->root.type == bfd_link_hash_undefined)
       value = 0;
      else
       value = (h->root.u.def.value + h->root.u.def.section->vma);

      /* Fill in the entry in the procedure linkage table.

        The format of a plt entry is
        <funcaddr> <__gp>.

        plt_offset is the offset within the PLT section at which to
        install the PLT entry.

        We are modifying the in-memory PLT contents here, so we do not add
        in the output_offset of the PLT section.  */

      bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
      value = _bfd_get_gp_value (splt->output_section->owner);
      bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);

      /* Create a dynamic IPLT relocation for this entry.

        We are creating a relocation in the output file's PLT section,
        which is included within the DLT secton.  So we do need to include
        the PLT's output_offset in the computation of the relocation's
        address.  */
      rel.r_offset = (dyn_h->plt_offset + splt->output_offset
                    + splt->output_section->vma);
      rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
      rel.r_addend = 0;

      loc = spltrel->contents;
      loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
      bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
    }

  /* Initialize an external call stub entry if requested.  */
  if (dyn_h && dyn_h->want_stub
      && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
    {
      bfd_vma value;
      int insn;
      unsigned int max_offset;

      BFD_ASSERT (stub != NULL);

      /* Install the generic stub template.

        We are modifying the contents of the stub section, so we do not
        need to include the stub section's output_offset here.  */
      memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));

      /* Fix up the first ldd instruction.

        We are modifying the contents of the STUB section in memory,
        so we do not need to include its output offset in this computation.

        Note the plt_offset value is the value of the PLT entry relative to
        the start of the PLT section.  These instructions will reference
        data relative to the value of __gp, which may not necessarily have
        the same address as the start of the PLT section.

        gp_offset contains the offset of __gp within the PLT section.  */
      value = dyn_h->plt_offset - hppa_info->gp_offset;

      insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
      if (output_bfd->arch_info->mach >= 25)
       {
         /* Wide mode allows 16 bit offsets.  */
         max_offset = 32768;
         insn &= ~ 0xfff1;
         insn |= re_assemble_16 ((int) value);
       }
      else
       {
         max_offset = 8192;
         insn &= ~ 0x3ff1;
         insn |= re_assemble_14 ((int) value);
       }

      if ((value & 7) || value + max_offset >= 2*max_offset - 8)
       {
         (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
                             dyn_h->root.string,
                             (long) value);
         return FALSE;
       }

      bfd_put_32 (stub->owner, (bfd_vma) insn,
                stub->contents + dyn_h->stub_offset);

      /* Fix up the second ldd instruction.  */
      value += 8;
      insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
      if (output_bfd->arch_info->mach >= 25)
       {
         insn &= ~ 0xfff1;
         insn |= re_assemble_16 ((int) value);
       }
      else
       {
         insn &= ~ 0x3ff1;
         insn |= re_assemble_14 ((int) value);
       }
      bfd_put_32 (stub->owner, (bfd_vma) insn,
                stub->contents + dyn_h->stub_offset + 8);
    }

  return TRUE;
}

Here is the call graph for this function:

static bfd_boolean elf64_hppa_grok_prstatus ( bfd abfd,
Elf_Internal_Note note 
) [static]

Definition at line 2535 of file elf64-hppa.c.

{
  int offset;
  size_t size;

  switch (note->descsz)
    {
      default:
       return FALSE;

      case 760:             /* Linux/hppa */
       /* pr_cursig */
       elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);

       /* pr_pid */
       elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);

       /* pr_reg */
       offset = 112;
       size = 640;

       break;
    }

  /* Make a ".reg/999" section.  */
  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
                                     size, note->descpos + offset);
}

Here is the call graph for this function:

static bfd_boolean elf64_hppa_grok_psinfo ( bfd abfd,
Elf_Internal_Note note 
) [static]

Definition at line 2565 of file elf64-hppa.c.

{
  char * command;
  int n;

  switch (note->descsz)
    {
    default:
      return FALSE;

    case 136:        /* Linux/hppa elf_prpsinfo.  */
      elf_tdata (abfd)->core_program
       = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
      elf_tdata (abfd)->core_command
       = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
    }

  /* Note that for some reason, a spurious space is tacked
     onto the end of the args in some (at least one anyway)
     implementations, so strip it off if it exists.  */
  command = elf_tdata (abfd)->core_command;
  n = strlen (command);

  if (0 < n && command[n - 1] == ' ')
    command[n - 1] = '\0';

  return TRUE;
}

Here is the call graph for this function:

static struct bfd_link_hash_table* elf64_hppa_hash_table_create ( bfd abfd) [static, read]

Definition at line 313 of file elf64-hppa.c.

{
  struct elf64_hppa_link_hash_table *ret;

  ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
  if (!ret)
    return 0;
  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
                                  _bfd_elf_link_hash_newfunc,
                                  sizeof (struct elf_link_hash_entry)))
    {
      bfd_release (abfd, ret);
      return 0;
    }

  if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
                                   elf64_hppa_new_dyn_hash_entry,
                                   sizeof (struct elf64_hppa_dyn_hash_entry)))
    return 0;
  return &ret->root.root;
}

Here is the call graph for this function:

static bfd_boolean elf64_hppa_link_output_symbol_hook ( struct bfd_link_info info,
const char *  name,
Elf_Internal_Sym *  sym,
input_sec  ,
struct elf_link_hash_entry h 
) [static]

Definition at line 1854 of file elf64-hppa.c.

{
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_dyn_hash_entry *dyn_h;

  /* We may be called with the file symbol or section symbols.
     They never need munging, so it is safe to ignore them.  */
  if (!name)
    return TRUE;

  /* Get the PA dyn_symbol (if any) associated with NAME.  */
  hppa_info = elf64_hppa_hash_table (info);
  dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
                                  name, FALSE, FALSE);
  if (!dyn_h || dyn_h->h != h)
    return TRUE;

  /* Function symbols for which we created .opd entries *may* have been
     munged by finish_dynamic_symbol and have to be un-munged here.

     Note that finish_dynamic_symbol sometimes turns dynamic symbols
     into non-dynamic ones, so we initialize st_shndx to -1 in
     mark_exported_functions and check to see if it was overwritten
     here instead of just checking dyn_h->h->dynindx.  */
  if (dyn_h->want_opd && dyn_h->st_shndx != -1)
    {
      /* Restore the saved value and section index.  */
      sym->st_value = dyn_h->st_value;
      sym->st_shndx = dyn_h->st_shndx;
    }

  return TRUE;
}

Here is the call graph for this function:

Definition at line 981 of file elf64-hppa.c.

{
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct elf64_hppa_link_hash_table *hppa_info;

  hppa_info = elf64_hppa_hash_table (info);

  if (h->root.type == bfd_link_hash_warning)
    h = (struct elf_link_hash_entry *) h->root.u.i.link;

  if (h
      && (h->root.type == bfd_link_hash_defined
         || h->root.type == bfd_link_hash_defweak)
      && h->root.u.def.section->output_section != NULL
      && h->type == STT_FUNC)
    {
       struct elf64_hppa_dyn_hash_entry *dyn_h;

      /* Add this symbol to the PA64 linker hash table.  */
      dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
                                     h->root.root.string, TRUE, TRUE);
      BFD_ASSERT (dyn_h);
      dyn_h->h = h;

      if (! hppa_info->opd_sec
         && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
       return FALSE;

      dyn_h->want_opd = 1;
      /* Put a flag here for output_symbol_hook.  */
      dyn_h->st_shndx = -1;
      h->needs_plt = 1;
    }

  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

Definition at line 1572 of file elf64-hppa.c.

{
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct elf_link_hash_entry *elf = h;

  if (elf->root.type == bfd_link_hash_warning)
    elf = (struct elf_link_hash_entry *) elf->root.u.i.link;

  if (elf->type == STT_PARISC_MILLI)
    {
      if (elf->dynindx != -1)
       {
         elf->dynindx = -1;
         _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
                              elf->dynstr_index);
       }
      return TRUE;
    }

  return elf64_hppa_mark_exported_functions (h, data);
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean elf64_hppa_modify_segment_map ( bfd abfd,
struct bfd_link_info *info  ATTRIBUTE_UNUSED 
) [static]

Definition at line 2634 of file elf64-hppa.c.

{
  struct elf_segment_map *m;
  asection *s;

  s = bfd_get_section_by_name (abfd, ".interp");
  if (! s)
    {
      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
       if (m->p_type == PT_PHDR)
         break;
      if (m == NULL)
       {
         m = ((struct elf_segment_map *)
              bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
         if (m == NULL)
           return FALSE;

         m->p_type = PT_PHDR;
         m->p_flags = PF_R | PF_X;
         m->p_flags_valid = 1;
         m->p_paddr_valid = 1;
         m->includes_phdrs = 1;

         m->next = elf_tdata (abfd)->segment_map;
         elf_tdata (abfd)->segment_map = m;
       }
    }

  for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
    if (m->p_type == PT_LOAD)
      {
       unsigned int i;

       for (i = 0; i < m->count; i++)
         {
           /* The code "hint" is not really a hint.  It is a requirement
              for certain versions of the HP dynamic linker.  Worse yet,
              it must be set even if the shared library does not have
              any code in its "text" segment (thus the check for .hash
              to catch this situation).  */
           if (m->sections[i]->flags & SEC_CODE
              || (strcmp (m->sections[i]->name, ".hash") == 0))
             m->p_flags |= (PF_X | PF_HP_CODE);
         }
      }

  return TRUE;
}

Here is the call graph for this function:

static struct bfd_hash_entry* elf64_hppa_new_dyn_hash_entry ( struct bfd_hash_entry entry,
struct bfd_hash_table table,
const char *  string 
) [static, read]

Definition at line 280 of file elf64-hppa.c.

{
  struct elf64_hppa_dyn_hash_entry *ret;
  ret = (struct elf64_hppa_dyn_hash_entry *) entry;

  /* Allocate the structure if it has not already been allocated by a
     subclass.  */
  if (!ret)
    ret = bfd_hash_allocate (table, sizeof (*ret));

  if (!ret)
    return 0;

  /* Call the allocation method of the superclass.  */
  ret = ((struct elf64_hppa_dyn_hash_entry *)
        bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));

  /* Initialize our local data.  All zeros.  */
  memset (&ret->dlt_offset, 0,
         (sizeof (struct elf64_hppa_dyn_hash_entry)
          - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));

  return &ret->root;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean elf64_hppa_object_p ( bfd abfd) [static]

Definition at line 366 of file elf64-hppa.c.

{
  Elf_Internal_Ehdr * i_ehdrp;
  unsigned int flags;

  i_ehdrp = elf_elfheader (abfd);
  if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
    {
      /* GCC on hppa-linux produces binaries with OSABI=Linux,
        but the kernel produces corefiles with OSABI=SysV.  */
      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
         && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
       return FALSE;
    }
  else
    {
      /* HPUX produces binaries with OSABI=HPUX,
        but the kernel produces corefiles with OSABI=SysV.  */
      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
         && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
       return FALSE;
    }

  flags = i_ehdrp->e_flags;
  switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
    {
    case EFA_PARISC_1_0:
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
    case EFA_PARISC_1_1:
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
    case EFA_PARISC_2_0:
      if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
        return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
      else
        return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
    case EFA_PARISC_2_0 | EF_PARISC_WIDE:
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
    }
  /* Don't be fussy.  */
  return TRUE;
}

Here is the call graph for this function:

static void elf64_hppa_post_process_headers ( bfd abfd,
link_info   
) [static]

Definition at line 1194 of file elf64-hppa.c.

{
  Elf_Internal_Ehdr * i_ehdrp;

  i_ehdrp = elf_elfheader (abfd);
  
  i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
  i_ehdrp->e_ident[EI_ABIVERSION] = 1;
}
static enum elf_reloc_type_class elf64_hppa_reloc_type_class ( Elf_Internal_Rela rela) const [static]

Definition at line 2402 of file elf64-hppa.c.

{
  if (ELF64_R_SYM (rela->r_info) == 0)
    return reloc_class_relative;

  switch ((int) ELF64_R_TYPE (rela->r_info))
    {
    case R_PARISC_IPLT:
      return reloc_class_plt;
    case R_PARISC_COPY:
      return reloc_class_copy;
    default:
      return reloc_class_normal;
    }
}
static bfd_boolean elf64_hppa_section_from_phdr ( bfd abfd,
Elf_Internal_Phdr *  hdr,
int  index,
const char *  typename 
) [static]

Definition at line 2700 of file elf64-hppa.c.

{
  if (hdr->p_type == PT_HP_CORE_KERNEL)
    {
      asection *sect;

      if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
       return FALSE;

      sect = bfd_make_section_anyway (abfd, ".kernel");
      if (sect == NULL)
       return FALSE;
      sect->size = hdr->p_filesz;
      sect->filepos = hdr->p_offset;
      sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
      return TRUE;
    }

  if (hdr->p_type == PT_HP_CORE_PROC)
    {
      int sig;

      if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
       return FALSE;
      if (bfd_bread (&sig, 4, abfd) != 4)
       return FALSE;

      elf_tdata (abfd)->core_signal = sig;

      if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
       return FALSE;

      /* GDB uses the ".reg" section to read register contents.  */
      return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
                                         hdr->p_offset);
    }

  if (hdr->p_type == PT_HP_CORE_LOADABLE
      || hdr->p_type == PT_HP_CORE_STACK
      || hdr->p_type == PT_HP_CORE_MMF)
    hdr->p_type = PT_LOAD;

  return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
}

Here is the call graph for this function:

static bfd_boolean elf64_hppa_section_from_shdr ( bfd abfd,
Elf_Internal_Shdr hdr,
const char *  name,
int  shindex 
) [static]

Definition at line 412 of file elf64-hppa.c.

{
  asection *newsect;

  switch (hdr->sh_type)
    {
    case SHT_PARISC_EXT:
      if (strcmp (name, ".PARISC.archext") != 0)
       return FALSE;
      break;
    case SHT_PARISC_UNWIND:
      if (strcmp (name, ".PARISC.unwind") != 0)
       return FALSE;
      break;
    case SHT_PARISC_DOC:
    case SHT_PARISC_ANNOT:
    default:
      return FALSE;
    }

  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
    return FALSE;
  newsect = hdr->bfd_section;

  return TRUE;
}

Here is the call graph for this function:

static bfd_boolean elf64_hppa_size_dynamic_sections ( bfd output_bfd,
struct bfd_link_info info 
) [static]

Definition at line 1600 of file elf64-hppa.c.

{
  bfd *dynobj;
  asection *s;
  bfd_boolean plt;
  bfd_boolean relocs;
  bfd_boolean reltext;
  struct elf64_hppa_allocate_data data;
  struct elf64_hppa_link_hash_table *hppa_info;

  hppa_info = elf64_hppa_hash_table (info);

  dynobj = elf_hash_table (info)->dynobj;
  BFD_ASSERT (dynobj != NULL);

  /* Mark each function this program exports so that we will allocate
     space in the .opd section for each function's FPTR.  If we are
     creating dynamic sections, change the dynamic index of millicode
     symbols to -1 and remove them from the string table for .dynstr.

     We have to traverse the main linker hash table since we have to
     find functions which may not have been mentioned in any relocs.  */
  elf_link_hash_traverse (elf_hash_table (info),
                       (elf_hash_table (info)->dynamic_sections_created
                        ? elf64_hppa_mark_milli_and_exported_functions
                        : elf64_hppa_mark_exported_functions),
                       info);

  if (elf_hash_table (info)->dynamic_sections_created)
    {
      /* Set the contents of the .interp section to the interpreter.  */
      if (info->executable)
       {
         s = bfd_get_section_by_name (dynobj, ".interp");
         BFD_ASSERT (s != NULL);
         s->size = sizeof ELF_DYNAMIC_INTERPRETER;
         s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
       }
    }
  else
    {
      /* We may have created entries in the .rela.got section.
        However, if we are not creating the dynamic sections, we will
        not actually use these entries.  Reset the size of .rela.dlt,
        which will cause it to get stripped from the output file
        below.  */
      s = bfd_get_section_by_name (dynobj, ".rela.dlt");
      if (s != NULL)
       s->size = 0;
    }

  /* Allocate the GOT entries.  */

  data.info = info;
  if (elf64_hppa_hash_table (info)->dlt_sec)
    {
      data.ofs = 0x0;
      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
                                allocate_global_data_dlt, &data);
      hppa_info->dlt_sec->size = data.ofs;

      data.ofs = 0x0;
      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
                                allocate_global_data_plt, &data);
      hppa_info->plt_sec->size = data.ofs;

      data.ofs = 0x0;
      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
                                allocate_global_data_stub, &data);
      hppa_info->stub_sec->size = data.ofs;
    }

  /* Allocate space for entries in the .opd section.  */
  if (elf64_hppa_hash_table (info)->opd_sec)
    {
      data.ofs = 0;
      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
                                allocate_global_data_opd, &data);
      hppa_info->opd_sec->size = data.ofs;
    }

  /* Now allocate space for dynamic relocations, if necessary.  */
  if (hppa_info->root.dynamic_sections_created)
    elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
                              allocate_dynrel_entries, &data);

  /* The sizes of all the sections are set.  Allocate memory for them.  */
  plt = FALSE;
  relocs = FALSE;
  reltext = FALSE;
  for (s = dynobj->sections; s != NULL; s = s->next)
    {
      const char *name;

      if ((s->flags & SEC_LINKER_CREATED) == 0)
       continue;

      /* It's OK to base decisions on the section name, because none
        of the dynobj section names depend upon the input files.  */
      name = bfd_get_section_name (dynobj, s);

      if (strcmp (name, ".plt") == 0)
       {
         /* Remember whether there is a PLT.  */
         plt = s->size != 0;
       }
      else if (strcmp (name, ".opd") == 0
              || CONST_STRNEQ (name, ".dlt")
              || strcmp (name, ".stub") == 0
              || strcmp (name, ".got") == 0)
       {
         /* Strip this section if we don't need it; see the comment below.  */
       }
      else if (CONST_STRNEQ (name, ".rela"))
       {
         if (s->size != 0)
           {
             asection *target;

             /* Remember whether there are any reloc sections other
               than .rela.plt.  */
             if (strcmp (name, ".rela.plt") != 0)
              {
                const char *outname;

                relocs = TRUE;

                /* If this relocation section applies to a read only
                   section, then we probably need a DT_TEXTREL
                   entry.  The entries in the .rela.plt section
                   really apply to the .got section, which we
                   created ourselves and so know is not readonly.  */
                outname = bfd_get_section_name (output_bfd,
                                            s->output_section);
                target = bfd_get_section_by_name (output_bfd, outname + 4);
                if (target != NULL
                    && (target->flags & SEC_READONLY) != 0
                    && (target->flags & SEC_ALLOC) != 0)
                  reltext = TRUE;
              }

             /* We use the reloc_count field as a counter if we need
               to copy relocs into the output file.  */
             s->reloc_count = 0;
           }
       }
      else
       {
         /* It's not one of our sections, so don't allocate space.  */
         continue;
       }

      if (s->size == 0)
       {
         /* If we don't need this section, strip it from the
            output file.  This is mostly to handle .rela.bss and
            .rela.plt.  We must create both sections in
            create_dynamic_sections, because they must be created
            before the linker maps input sections to output
            sections.  The linker does that before
            adjust_dynamic_symbol is called, and it is that
            function which decides whether anything needs to go
            into these sections.  */
         s->flags |= SEC_EXCLUDE;
         continue;
       }

      if ((s->flags & SEC_HAS_CONTENTS) == 0)
       continue;

      /* Allocate memory for the section contents if it has not
        been allocated already.  We use bfd_zalloc here in case
        unused entries are not reclaimed before the section's
        contents are written out.  This should not happen, but this
        way if it does, we get a R_PARISC_NONE reloc instead of
        garbage.  */
      if (s->contents == NULL)
       {
         s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
         if (s->contents == NULL)
           return FALSE;
       }
    }

  if (elf_hash_table (info)->dynamic_sections_created)
    {
      /* Always create a DT_PLTGOT.  It actually has nothing to do with
        the PLT, it is how we communicate the __gp value of a load
        module to the dynamic linker.  */
#define add_dynamic_entry(TAG, VAL) \
  _bfd_elf_add_dynamic_entry (info, TAG, VAL)

      if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
         || !add_dynamic_entry (DT_PLTGOT, 0))
       return FALSE;

      /* Add some entries to the .dynamic section.  We fill in the
        values later, in elf64_hppa_finish_dynamic_sections, but we
        must add the entries now so that we get the correct size for
        the .dynamic section.  The DT_DEBUG entry is filled in by the
        dynamic linker and used by the debugger.  */
      if (! info->shared)
       {
         if (!add_dynamic_entry (DT_DEBUG, 0)
             || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
             || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
           return FALSE;
       }

      /* Force DT_FLAGS to always be set.
        Required by HPUX 11.00 patch PHSS_26559.  */
      if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
       return FALSE;

      if (plt)
       {
         if (!add_dynamic_entry (DT_PLTRELSZ, 0)
             || !add_dynamic_entry (DT_PLTREL, DT_RELA)
             || !add_dynamic_entry (DT_JMPREL, 0))
           return FALSE;
       }

      if (relocs)
       {
         if (!add_dynamic_entry (DT_RELA, 0)
             || !add_dynamic_entry (DT_RELASZ, 0)
             || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
           return FALSE;
       }

      if (reltext)
       {
         if (!add_dynamic_entry (DT_TEXTREL, 0))
           return FALSE;
         info->flags |= DF_TEXTREL;
       }
    }
#undef add_dynamic_entry

  return TRUE;
}

Here is the call graph for this function:

static bfd_boolean get_dlt ( bfd abfd,
info  ,
struct elf64_hppa_link_hash_table hppa_info 
) [static]

Definition at line 1286 of file elf64-hppa.c.

{
  asection *dlt;
  bfd *dynobj;

  dlt = hppa_info->dlt_sec;
  if (!dlt)
    {
      dynobj = hppa_info->root.dynobj;
      if (!dynobj)
       hppa_info->root.dynobj = dynobj = abfd;

      dlt = bfd_make_section_with_flags (dynobj, ".dlt",
                                    (SEC_ALLOC
                                     | SEC_LOAD
                                     | SEC_HAS_CONTENTS
                                     | SEC_IN_MEMORY
                                     | SEC_LINKER_CREATED));
      if (!dlt
         || !bfd_set_section_alignment (abfd, dlt, 3))
       {
         BFD_ASSERT (0);
         return FALSE;
       }

      hppa_info->dlt_sec = dlt;
    }

  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static const char* get_dyn_name ( bfd abfd,
struct elf_link_hash_entry h,
const Elf_Internal_Rela rel,
char **  pbuf,
size_t plen 
) [static]

Definition at line 447 of file elf64-hppa.c.

{
  asection *sec = abfd->sections;
  size_t nlen, tlen;
  char *buf;
  size_t len;

  if (h && rel->r_addend == 0)
    return h->root.root.string;

  if (h)
    nlen = strlen (h->root.root.string);
  else
    nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
  tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;

  len = *plen;
  buf = *pbuf;
  if (len < tlen)
    {
      if (buf)
       free (buf);
      *pbuf = buf = malloc (tlen);
      *plen = len = tlen;
      if (!buf)
       return NULL;
    }

  if (h)
    {
      memcpy (buf, h->root.root.string, nlen);
      buf[nlen++] = '+';
      sprintf_vma (buf + nlen, rel->r_addend);
    }
  else
    {
      nlen = sprintf (buf, "%x:%lx",
                    sec->id & 0xffffffff,
                    (long) ELF64_R_SYM (rel->r_info));
      if (rel->r_addend)
       {
         buf[nlen++] = '+';
         sprintf_vma (buf + nlen, rel->r_addend);
       }
    }

  return buf;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean get_opd ( bfd abfd,
info  ,
struct elf64_hppa_link_hash_table hppa_info 
) [static]

Definition at line 1212 of file elf64-hppa.c.

{
  asection *opd;
  bfd *dynobj;

  opd = hppa_info->opd_sec;
  if (!opd)
    {
      dynobj = hppa_info->root.dynobj;
      if (!dynobj)
       hppa_info->root.dynobj = dynobj = abfd;

      opd = bfd_make_section_with_flags (dynobj, ".opd",
                                    (SEC_ALLOC
                                     | SEC_LOAD
                                     | SEC_HAS_CONTENTS
                                     | SEC_IN_MEMORY
                                     | SEC_LINKER_CREATED));
      if (!opd
         || !bfd_set_section_alignment (abfd, opd, 3))
       {
         BFD_ASSERT (0);
         return FALSE;
       }

      hppa_info->opd_sec = opd;
    }

  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean get_plt ( bfd abfd,
info  ,
struct elf64_hppa_link_hash_table hppa_info 
) [static]

Definition at line 1249 of file elf64-hppa.c.

{
  asection *plt;
  bfd *dynobj;

  plt = hppa_info->plt_sec;
  if (!plt)
    {
      dynobj = hppa_info->root.dynobj;
      if (!dynobj)
       hppa_info->root.dynobj = dynobj = abfd;

      plt = bfd_make_section_with_flags (dynobj, ".plt",
                                    (SEC_ALLOC
                                     | SEC_LOAD
                                     | SEC_HAS_CONTENTS
                                     | SEC_IN_MEMORY
                                     | SEC_LINKER_CREATED));
      if (!plt
         || !bfd_set_section_alignment (abfd, plt, 3))
       {
         BFD_ASSERT (0);
         return FALSE;
       }

      hppa_info->plt_sec = plt;
    }

  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean get_reloc_section ( bfd abfd,
struct elf64_hppa_link_hash_table hppa_info,
asection sec 
) [static]

Definition at line 505 of file elf64-hppa.c.

{
  const char *srel_name;
  asection *srel;
  bfd *dynobj;

  srel_name = (bfd_elf_string_from_elf_section
              (abfd, elf_elfheader(abfd)->e_shstrndx,
              elf_section_data(sec)->rel_hdr.sh_name));
  if (srel_name == NULL)
    return FALSE;

  BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela")
              && strcmp (bfd_get_section_name (abfd, sec),
                       srel_name + 5) == 0)
             || (CONST_STRNEQ (srel_name, ".rel")
                && strcmp (bfd_get_section_name (abfd, sec),
                          srel_name + 4) == 0));

  dynobj = hppa_info->root.dynobj;
  if (!dynobj)
    hppa_info->root.dynobj = dynobj = abfd;

  srel = bfd_get_section_by_name (dynobj, srel_name);
  if (srel == NULL)
    {
      srel = bfd_make_section_with_flags (dynobj, srel_name,
                                     (SEC_ALLOC
                                      | SEC_LOAD
                                      | SEC_HAS_CONTENTS
                                      | SEC_IN_MEMORY
                                      | SEC_LINKER_CREATED
                                      | SEC_READONLY));
      if (srel == NULL
         || !bfd_set_section_alignment (dynobj, srel, 3))
       return FALSE;
    }

  hppa_info->other_rel_sec = srel;
  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean get_stub ( bfd abfd,
info  ,
struct elf64_hppa_link_hash_table hppa_info 
) [static]

Definition at line 1323 of file elf64-hppa.c.

{
  asection *stub;
  bfd *dynobj;

  stub = hppa_info->stub_sec;
  if (!stub)
    {
      dynobj = hppa_info->root.dynobj;
      if (!dynobj)
       hppa_info->root.dynobj = dynobj = abfd;

      stub = bfd_make_section_with_flags (dynobj, ".stub",
                                     (SEC_ALLOC | SEC_LOAD
                                      | SEC_HAS_CONTENTS
                                      | SEC_IN_MEMORY
                                      | SEC_READONLY
                                      | SEC_LINKER_CREATED));
      if (!stub
         || !bfd_set_section_alignment (abfd, stub, 3))
       {
         BFD_ASSERT (0);
         return FALSE;
       }

      hppa_info->stub_sec = stub;
    }

  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static const char* get_dyn_name PARAMS ( (bfd *, struct elf_link_hash_entry *, const Elf_Internal_Rela *, char **, size_t *)  ) [static]
static bfd_boolean elf64_hppa_object_p PARAMS ( (bfd *)  ) [static]
static void elf64_hppa_post_process_headers PARAMS ( (bfd *, struct bfd_link_info *)  ) [static]
static enum elf_reloc_type_class PARAMS ( (const Elf_Internal_Rela *)  ) [static, abstract]
static int elf64_hppa_elf_get_symbol_type PARAMS ( (Elf_Internal_Sym *, int ) [static]

Variable Documentation

char plt_stub[] [static]
Initial value:
 {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
                       0x53, 0x7b, 0x00, 0x00 }

Definition at line 47 of file elf64-hppa.c.