Back to index

cell-binutils  2.17cvs20070401
Classes | Defines | Functions | Variables
elf64-alpha.c File Reference
#include "bfd.h"
#include "sysdep.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf/alpha.h"
#include "coff/internal.h"
#include "coff/sym.h"
#include "coff/symconst.h"
#include "coff/ecoff.h"
#include "coff/alpha.h"
#include "aout/ar.h"
#include "libcoff.h"
#include "libecoff.h"
#include "ecoffswap.h"
#include "elf64-target.h"

Go to the source code of this file.

Classes

struct  alpha_elf_link_hash_entry
struct  alpha_elf_link_hash_entry::alpha_elf_got_entry
struct  alpha_elf_link_hash_entry::alpha_elf_reloc_entry
struct  alpha_elf_obj_tdata
struct  elf_reloc_map
struct  mips_elf_find_line
struct  extsym_info
struct  alpha_relax_info

Defines

#define ALPHAECOFF
#define NO_COFF_RELOCS
#define NO_COFF_SYMBOLS
#define NO_COFF_LINENOS
#define ECOFF_64
#define OP_LDA   0x08
#define OP_LDAH   0x09
#define OP_LDQ   0x29
#define OP_BR   0x30
#define OP_BSR   0x34
#define INSN_LDA   (OP_LDA << 26)
#define INSN_LDAH   (OP_LDAH << 26)
#define INSN_LDQ   (OP_LDQ << 26)
#define INSN_BR   (OP_BR << 26)
#define INSN_ADDQ   0x40000400
#define INSN_RDUNIQ   0x0000009e
#define INSN_SUBQ   0x40000520
#define INSN_S4SUBQ   0x40000560
#define INSN_UNOP   0x2ffe0000
#define INSN_JSR   0x68004000
#define INSN_JMP   0x68000000
#define INSN_JSR_MASK   0xfc00c000
#define INSN_A(I, A)   (I | (A << 21))
#define INSN_AB(I, A, B)   (I | (A << 21) | (B << 16))
#define INSN_ABC(I, A, B, C)   (I | (A << 21) | (B << 16) | C)
#define INSN_ABO(I, A, B, O)   (I | (A << 21) | (B << 16) | ((O) & 0xffff))
#define INSN_AD(I, A, D)   (I | (A << 21) | (((D) >> 2) & 0x1fffff))
#define OLD_PLT_HEADER_SIZE   32
#define OLD_PLT_ENTRY_SIZE   12
#define NEW_PLT_HEADER_SIZE   36
#define NEW_PLT_ENTRY_SIZE   4
#define PLT_HEADER_SIZE   (elf64_alpha_use_secureplt ? NEW_PLT_HEADER_SIZE : OLD_PLT_HEADER_SIZE)
#define PLT_ENTRY_SIZE   (elf64_alpha_use_secureplt ? NEW_PLT_ENTRY_SIZE : OLD_PLT_ENTRY_SIZE)
#define MAX_GOT_SIZE   (64*1024)
#define ELF_DYNAMIC_INTERPRETER   "/usr/lib/ld.so"
#define ALPHA_ELF_LINK_HASH_LU_ADDR   0x01
#define ALPHA_ELF_LINK_HASH_LU_MEM   0x02
#define ALPHA_ELF_LINK_HASH_LU_BYTE   0x04
#define ALPHA_ELF_LINK_HASH_LU_JSR   0x08
#define ALPHA_ELF_LINK_HASH_LU_TLSGD   0x10
#define ALPHA_ELF_LINK_HASH_LU_TLSLDM   0x20
#define ALPHA_ELF_LINK_HASH_LU_JSRDIRECT   0x40
#define ALPHA_ELF_LINK_HASH_LU_PLT   0x38
#define ALPHA_ELF_LINK_HASH_TLS_IE   0x80
#define alpha_elf_link_hash_lookup(table, string, create, copy, follow)
#define alpha_elf_link_hash_traverse(table, func, info)
#define alpha_elf_hash_table(p)   ((struct alpha_elf_link_hash_table *) ((p)->hash))
#define alpha_elf_sym_hashes(abfd)   ((struct alpha_elf_link_hash_entry **)elf_sym_hashes(abfd))
#define alpha_elf_tdata(abfd)   ((struct alpha_elf_obj_tdata *) (abfd)->tdata.any)
#define MINUS_ONE   (((bfd_vma)0) - 1)
#define SKIP_HOWTO(N)   HOWTO(N, 0, 0, 0, 0, 0, 0, elf64_alpha_reloc_bad, 0, 0, 0, 0, 0)
#define alpha_got_entry_size(r_type)   (r_type == R_ALPHA_TLSGD || r_type == R_ALPHA_TLSLDM ? 16 : 8)
#define alpha_get_dtprel_base(info)   (elf_hash_table (info)->tls_sec->vma)
#define alpha_get_tprel_base(info)
#define READ(ptr, offset, count, size, type)
#define add_dynamic_entry(TAG, VAL)   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
#define TARGET_LITTLE_SYM   bfd_elf64_alpha_vec
#define TARGET_LITTLE_NAME   "elf64-alpha"
#define ELF_ARCH   bfd_arch_alpha
#define ELF_MACHINE_CODE   EM_ALPHA
#define ELF_MAXPAGESIZE   0x10000
#define ELF_COMMONPAGESIZE   0x2000
#define bfd_elf64_bfd_link_hash_table_create   elf64_alpha_bfd_link_hash_table_create
#define bfd_elf64_bfd_reloc_type_lookup   elf64_alpha_bfd_reloc_type_lookup
#define bfd_elf64_bfd_reloc_name_lookup   elf64_alpha_bfd_reloc_name_lookup
#define elf_info_to_howto   elf64_alpha_info_to_howto
#define bfd_elf64_mkobject   elf64_alpha_mkobject
#define elf_backend_object_p   elf64_alpha_object_p
#define elf_backend_section_from_shdr   elf64_alpha_section_from_shdr
#define elf_backend_section_flags   elf64_alpha_section_flags
#define elf_backend_fake_sections   elf64_alpha_fake_sections
#define bfd_elf64_bfd_is_local_label_name   elf64_alpha_is_local_label_name
#define bfd_elf64_find_nearest_line   elf64_alpha_find_nearest_line
#define bfd_elf64_bfd_relax_section   elf64_alpha_relax_section
#define elf_backend_add_symbol_hook   elf64_alpha_add_symbol_hook
#define elf_backend_check_relocs   elf64_alpha_check_relocs
#define elf_backend_create_dynamic_sections   elf64_alpha_create_dynamic_sections
#define elf_backend_adjust_dynamic_symbol   elf64_alpha_adjust_dynamic_symbol
#define elf_backend_merge_symbol_attribute   elf64_alpha_merge_symbol_attribute
#define elf_backend_always_size_sections   elf64_alpha_always_size_sections
#define elf_backend_size_dynamic_sections   elf64_alpha_size_dynamic_sections
#define elf_backend_omit_section_dynsym   ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
#define elf_backend_relocate_section   elf64_alpha_relocate_section
#define elf_backend_finish_dynamic_symbol   elf64_alpha_finish_dynamic_symbol
#define elf_backend_finish_dynamic_sections   elf64_alpha_finish_dynamic_sections
#define bfd_elf64_bfd_final_link   elf64_alpha_final_link
#define elf_backend_reloc_type_class   elf64_alpha_reloc_type_class
#define elf_backend_ecoff_debug_swap   &elf64_alpha_ecoff_debug_swap
#define elf_backend_size_info   alpha_elf_size_info
#define elf_backend_special_sections   elf64_alpha_special_sections
#define elf_backend_want_got_plt   0
#define elf_backend_plt_readonly   0
#define elf_backend_want_plt_sym   1
#define elf_backend_got_header_size   0
#define TARGET_LITTLE_SYM   bfd_elf64_alpha_freebsd_vec
#define TARGET_LITTLE_NAME   "elf64-alpha-freebsd"
#define ELF_OSABI   ELFOSABI_FREEBSD
#define elf_backend_post_process_headers   elf64_alpha_fbsd_post_process_headers
#define elf64_bed   elf64_alpha_fbsd_bed

Functions

static bfd_boolean alpha_elf_dynamic_symbol_p (struct elf_link_hash_entry *h, struct bfd_link_info *info)
static struct bfd_hash_entryelf64_alpha_link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string)
static struct bfd_link_hash_tableelf64_alpha_bfd_link_hash_table_create (bfd *abfd)
static bfd_boolean elf64_alpha_mkobject (bfd *abfd)
static bfd_boolean elf64_alpha_object_p (bfd *abfd)
static bfd_reloc_status_type elf64_alpha_reloc_nil (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc, asymbol *sym ATTRIBUTE_UNUSED, PTR data ATTRIBUTE_UNUSED, asection *sec, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED)
static bfd_reloc_status_type elf64_alpha_reloc_bad (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc, asymbol *sym ATTRIBUTE_UNUSED, PTR data ATTRIBUTE_UNUSED, asection *sec, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED)
static bfd_reloc_status_type elf64_alpha_do_reloc_gpdisp (bfd *abfd, bfd_vma gpdisp, bfd_byte *p_ldah, bfd_byte *p_lda)
static bfd_reloc_status_type elf64_alpha_reloc_gpdisp (bfd *abfd, arelent *reloc_entry, asymbol *sym ATTRIBUTE_UNUSED, PTR data, asection *input_section, bfd *output_bfd, char **err_msg)
static reloc_howto_type * elf64_alpha_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, bfd_reloc_code_real_type code)
static reloc_howto_type * elf64_alpha_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
static void elf64_alpha_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr, Elf_Internal_Rela *dst)
static bfd_boolean elf64_alpha_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr, const char *name, int shindex)
static bfd_boolean elf64_alpha_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
static bfd_boolean elf64_alpha_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
static bfd_boolean elf64_alpha_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, Elf_Internal_Sym *sym, const char **namep ATTRIBUTE_UNUSED, flagword *flagsp ATTRIBUTE_UNUSED, asection **secp, bfd_vma *valp)
static bfd_boolean elf64_alpha_create_got_section (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
static bfd_boolean elf64_alpha_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
static bfd_boolean elf64_alpha_read_ecoff_info (bfd *abfd, asection *section, struct ecoff_debug_info *debug)
static bfd_boolean elf64_alpha_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED, const char *name)
static bfd_boolean elf64_alpha_find_nearest_line (bfd *abfd, asection *section, asymbol **symbols, bfd_vma offset, const char **filename_ptr, const char **functionname_ptr, unsigned int *line_ptr)
static bfd_boolean elf64_alpha_output_extsym (struct alpha_elf_link_hash_entry *h, PTR data)
static struct alpha_elf_got_entry * get_got_entry (bfd *abfd, struct alpha_elf_link_hash_entry *h, unsigned long r_type, unsigned long r_symndx, bfd_vma r_addend)
static bfd_boolean elf64_alpha_want_plt (struct alpha_elf_link_hash_entry *ah)
static bfd_boolean elf64_alpha_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs)
static bfd_boolean elf64_alpha_adjust_dynamic_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
static void elf64_alpha_merge_symbol_attribute (struct elf_link_hash_entry *h, const Elf_Internal_Sym *isym, bfd_boolean definition, bfd_boolean dynamic)
static bfd_boolean elf64_alpha_merge_ind_symbols (struct alpha_elf_link_hash_entry *hi, PTR dummy ATTRIBUTE_UNUSED)
static bfd_boolean elf64_alpha_can_merge_gots (bfd *a, bfd *b)
static void elf64_alpha_merge_gots (bfd *a, bfd *b)
static bfd_boolean elf64_alpha_calc_got_offsets_for_symbol (struct alpha_elf_link_hash_entry *h, PTR arg ATTRIBUTE_UNUSED)
static void elf64_alpha_calc_got_offsets (struct bfd_link_info *info)
static bfd_boolean elf64_alpha_size_got_sections (struct bfd_link_info *info)
static bfd_boolean elf64_alpha_size_plt_section_1 (struct alpha_elf_link_hash_entry *h, PTR data)
static bfd_boolean elf64_alpha_size_plt_section (struct bfd_link_info *info)
static bfd_boolean elf64_alpha_always_size_sections (bfd *output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
static int alpha_dynamic_entries_for_reloc (int r_type, int dynamic, int shared)
static bfd_boolean elf64_alpha_calc_dynrel_sizes (struct alpha_elf_link_hash_entry *h, struct bfd_link_info *info)
static bfd_boolean elf64_alpha_size_rela_got_1 (struct alpha_elf_link_hash_entry *h, struct bfd_link_info *info)
static bfd_boolean elf64_alpha_size_rela_got_section (struct bfd_link_info *info)
static bfd_boolean elf64_alpha_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
static Elf_Internal_Relaelf64_alpha_find_reloc_at_ofs (Elf_Internal_Rela *rel, Elf_Internal_Rela *relend, bfd_vma offset, int type)
static bfd_boolean elf64_alpha_relax_got_load (struct alpha_relax_info *info, bfd_vma symval, Elf_Internal_Rela *irel, unsigned long r_type)
static bfd_vma elf64_alpha_relax_opt_call (struct alpha_relax_info *info, bfd_vma symval)
static bfd_boolean elf64_alpha_relax_with_lituse (struct alpha_relax_info *info, bfd_vma symval, Elf_Internal_Rela *irel)
static bfd_boolean elf64_alpha_relax_tls_get_addr (struct alpha_relax_info *info, bfd_vma symval, Elf_Internal_Rela *irel, bfd_boolean is_gd)
static bfd_boolean elf64_alpha_relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info, bfd_boolean *again)
static void elf64_alpha_emit_dynrel (bfd *abfd, struct bfd_link_info *info, asection *sec, asection *srel, bfd_vma offset, long dynindx, long rtype, bfd_vma addend)
static bfd_boolean elf64_alpha_relocate_section_r (bfd *output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info ATTRIBUTE_UNUSED, bfd *input_bfd, asection *input_section, bfd_byte *contents ATTRIBUTE_UNUSED, Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms, asection **local_sections)
static bfd_boolean elf64_alpha_relocate_section (bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd, asection *input_section, bfd_byte *contents, Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms, asection **local_sections)
static bfd_boolean elf64_alpha_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym)
static bfd_boolean elf64_alpha_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
static bfd_boolean elf64_alpha_final_link (bfd *abfd, struct bfd_link_info *info)
static enum elf_reloc_type_class elf64_alpha_reloc_type_class (const Elf_Internal_Rela *rela)
static void elf64_alpha_fbsd_post_process_headers (bfd *abfd, struct bfd_link_info *link_info ATTRIBUTE_UNUSED)

Variables

bfd_boolean elf64_alpha_use_secureplt = FALSE
static reloc_howto_type elf64_alpha_howto_table []
static struct elf_reloc_map []
static struct bfd_elf_special_section []
static struct ecoff_debug_swap
static struct elf_size_info

Class Documentation

struct alpha_elf_link_hash_entry

Definition at line 104 of file elf64-alpha.c.

Collaboration diagram for alpha_elf_link_hash_entry:
Class Members
EXTR esym
int flags
struct alpha_elf_got_entry * got_entries
struct alpha_elf_reloc_entry * reloc_entries
struct alpha_elf_link_hash_entry::alpha_elf_got_entry

Definition at line 126 of file elf64-alpha.c.

Collaboration diagram for alpha_elf_link_hash_entry::alpha_elf_got_entry:
Class Members
bfd_vma addend
unsigned char flags
int got_offset
bfd * gotobj
struct alpha_elf_got_entry * next
int plt_offset
unsigned char reloc_done
unsigned char reloc_type
unsigned char reloc_xlated
int use_count
struct alpha_elf_link_hash_entry::alpha_elf_reloc_entry

Definition at line 160 of file elf64-alpha.c.

Collaboration diagram for alpha_elf_link_hash_entry::alpha_elf_reloc_entry:
Class Members
unsigned long count
struct alpha_elf_reloc_entry * next
unsigned int reltext: 1
unsigned int rtype
asection * srel
struct alpha_elf_link_hash_table

Definition at line 180 of file elf64-alpha.c.

Collaboration diagram for alpha_elf_link_hash_table:
Class Members
bfd * got_list
struct alpha_elf_obj_tdata

Definition at line 289 of file elf64-alpha.c.

Collaboration diagram for alpha_elf_obj_tdata:
Class Members
asection * got
bfd * got_link_next
bfd * gotobj
bfd * in_got_link_next
struct alpha_elf_got_entry ** local_got_entries
int local_got_size
int total_got_size
struct elf_reloc_map

Definition at line 403 of file elf32-dlx.c.

Class Members
bfd_reloc_code_real_type bfd_reloc_val
bfd_reloc_code_real_type bfd_val
unsigned char elf_reloc_val
int elf_reloc_val
unsigned char howto_index
struct mips_elf_find_line

Definition at line 1417 of file elf64-alpha.c.

struct extsym_info

Definition at line 3884 of file ecoff.c.

Collaboration diagram for extsym_info:
Class Members
bfd * abfd
struct ecoff_debug_info * debug
bfd_boolean failed
struct bfd_link_info * info
struct ecoff_debug_swap * swap
struct alpha_relax_info

Definition at line 2892 of file elf64-alpha.c.

Collaboration diagram for alpha_relax_info:
Class Members
bfd * abfd
bfd_boolean changed_contents
bfd_boolean changed_relocs
bfd_byte * contents
struct alpha_elf_got_entry ** first_gotent
struct alpha_elf_got_entry * gotent
bfd * gotobj
bfd_vma gp
struct alpha_elf_link_hash_entry * h
struct bfd_link_info * link_info
unsigned char other
Elf_Internal_Rela * relend
Elf_Internal_Rela * relocs
asection * sec
Elf_Internal_Shdr * symtab_hdr
asection * tsec

Define Documentation

#define add_dynamic_entry (   TAG,
  VAL 
)    _bfd_elf_add_dynamic_entry (info, TAG, VAL)
#define alpha_elf_hash_table (   p)    ((struct alpha_elf_link_hash_table *) ((p)->hash))

Definition at line 206 of file elf64-alpha.c.

#define alpha_elf_link_hash_lookup (   table,
  string,
  create,
  copy,
  follow 
)
Value:
((struct alpha_elf_link_hash_entry *)                                 \
   elf_link_hash_lookup (&(table)->root, (string), (create),          \
                      (copy), (follow)))

Definition at line 191 of file elf64-alpha.c.

#define ALPHA_ELF_LINK_HASH_LU_ADDR   0x01

Definition at line 115 of file elf64-alpha.c.

#define ALPHA_ELF_LINK_HASH_LU_BYTE   0x04

Definition at line 117 of file elf64-alpha.c.

#define ALPHA_ELF_LINK_HASH_LU_JSR   0x08

Definition at line 118 of file elf64-alpha.c.

Definition at line 121 of file elf64-alpha.c.

#define ALPHA_ELF_LINK_HASH_LU_MEM   0x02

Definition at line 116 of file elf64-alpha.c.

#define ALPHA_ELF_LINK_HASH_LU_PLT   0x38

Definition at line 122 of file elf64-alpha.c.

#define ALPHA_ELF_LINK_HASH_LU_TLSGD   0x10

Definition at line 119 of file elf64-alpha.c.

#define ALPHA_ELF_LINK_HASH_LU_TLSLDM   0x20

Definition at line 120 of file elf64-alpha.c.

#define ALPHA_ELF_LINK_HASH_TLS_IE   0x80

Definition at line 123 of file elf64-alpha.c.

#define alpha_elf_link_hash_traverse (   table,
  func,
  info 
)
Value:
(elf_link_hash_traverse                                        \
   (&(table)->root,                                            \
    (bfd_boolean (*) (struct elf_link_hash_entry *, PTR)) (func),     \
    (info)))

Definition at line 198 of file elf64-alpha.c.

Definition at line 211 of file elf64-alpha.c.

#define alpha_elf_tdata (   abfd)    ((struct alpha_elf_obj_tdata *) (abfd)->tdata.any)

Definition at line 318 of file elf64-alpha.c.

#define alpha_get_dtprel_base (   info)    (elf_hash_table (info)->tls_sec->vma)

Definition at line 1091 of file elf64-alpha.c.

#define alpha_get_tprel_base (   info)
Value:
(elf_hash_table (info)->tls_sec->vma                                  \
   - align_power ((bfd_vma) 16,                                       \
                elf_hash_table (info)->tls_sec->alignment_power))

Definition at line 1096 of file elf64-alpha.c.

#define alpha_got_entry_size (   r_type)    (r_type == R_ALPHA_TLSGD || r_type == R_ALPHA_TLSLDM ? 16 : 8)

Definition at line 1087 of file elf64-alpha.c.

#define ALPHAECOFF

Definition at line 32 of file elf64-alpha.c.

Definition at line 5348 of file elf64-alpha.c.

Definition at line 5319 of file elf64-alpha.c.

Definition at line 5297 of file elf64-alpha.c.

Definition at line 5323 of file elf64-alpha.c.

Definition at line 5302 of file elf64-alpha.c.

Definition at line 5300 of file elf64-alpha.c.

Definition at line 5321 of file elf64-alpha.c.

Definition at line 5307 of file elf64-alpha.c.

#define ECOFF_64

Definition at line 47 of file elf64-alpha.c.

#define elf64_bed   elf64_alpha_fbsd_bed

Definition at line 5404 of file elf64-alpha.c.

#define ELF_ARCH   bfd_arch_alpha

Definition at line 5292 of file elf64-alpha.c.

Definition at line 5326 of file elf64-alpha.c.

Definition at line 5332 of file elf64-alpha.c.

Definition at line 5336 of file elf64-alpha.c.

Definition at line 5328 of file elf64-alpha.c.

Definition at line 5330 of file elf64-alpha.c.

#define elf_backend_ecoff_debug_swap   &elf64_alpha_ecoff_debug_swap

Definition at line 5353 of file elf64-alpha.c.

Definition at line 5316 of file elf64-alpha.c.

Definition at line 5346 of file elf64-alpha.c.

Definition at line 5344 of file elf64-alpha.c.

Definition at line 5366 of file elf64-alpha.c.

Definition at line 5334 of file elf64-alpha.c.

Definition at line 5309 of file elf64-alpha.c.

Definition at line 5340 of file elf64-alpha.c.

#define elf_backend_plt_readonly   0

Definition at line 5364 of file elf64-alpha.c.

Definition at line 5400 of file elf64-alpha.c.

Definition at line 5350 of file elf64-alpha.c.

Definition at line 5342 of file elf64-alpha.c.

Definition at line 5314 of file elf64-alpha.c.

Definition at line 5312 of file elf64-alpha.c.

Definition at line 5338 of file elf64-alpha.c.

#define elf_backend_size_info   alpha_elf_size_info

Definition at line 5356 of file elf64-alpha.c.

#define elf_backend_special_sections   elf64_alpha_special_sections

Definition at line 5359 of file elf64-alpha.c.

#define elf_backend_want_got_plt   0

Definition at line 5363 of file elf64-alpha.c.

#define elf_backend_want_plt_sym   1

Definition at line 5365 of file elf64-alpha.c.

#define ELF_COMMONPAGESIZE   0x2000

Definition at line 5295 of file elf64-alpha.c.

#define ELF_DYNAMIC_INTERPRETER   "/usr/lib/ld.so"

Definition at line 102 of file elf64-alpha.c.

Definition at line 5304 of file elf64-alpha.c.

#define ELF_MACHINE_CODE   EM_ALPHA

Definition at line 5293 of file elf64-alpha.c.

#define ELF_MAXPAGESIZE   0x10000

Definition at line 5294 of file elf64-alpha.c.

Definition at line 5377 of file elf64-alpha.c.

#define INSN_A (   I,
  A 
)    (I | (A << 21))

Definition at line 74 of file elf64-alpha.c.

#define INSN_AB (   I,
  A,
  B 
)    (I | (A << 21) | (B << 16))

Definition at line 75 of file elf64-alpha.c.

#define INSN_ABC (   I,
  A,
  B,
  C 
)    (I | (A << 21) | (B << 16) | C)

Definition at line 76 of file elf64-alpha.c.

#define INSN_ABO (   I,
  A,
  B,
  O 
)    (I | (A << 21) | (B << 16) | ((O) & 0xffff))

Definition at line 77 of file elf64-alpha.c.

#define INSN_AD (   I,
  A,
  D 
)    (I | (A << 21) | (((D) >> 2) & 0x1fffff))

Definition at line 78 of file elf64-alpha.c.

#define INSN_ADDQ   0x40000400

Definition at line 64 of file elf64-alpha.c.

#define INSN_BR   (OP_BR << 26)

Definition at line 62 of file elf64-alpha.c.

#define INSN_JMP   0x68000000

Definition at line 71 of file elf64-alpha.c.

#define INSN_JSR   0x68004000

Definition at line 70 of file elf64-alpha.c.

#define INSN_JSR_MASK   0xfc00c000

Definition at line 72 of file elf64-alpha.c.

#define INSN_LDA   (OP_LDA << 26)

Definition at line 59 of file elf64-alpha.c.

#define INSN_LDAH   (OP_LDAH << 26)

Definition at line 60 of file elf64-alpha.c.

#define INSN_LDQ   (OP_LDQ << 26)

Definition at line 61 of file elf64-alpha.c.

#define INSN_RDUNIQ   0x0000009e

Definition at line 65 of file elf64-alpha.c.

#define INSN_S4SUBQ   0x40000560

Definition at line 67 of file elf64-alpha.c.

#define INSN_SUBQ   0x40000520

Definition at line 66 of file elf64-alpha.c.

#define INSN_UNOP   0x2ffe0000

Definition at line 68 of file elf64-alpha.c.

#define MAX_GOT_SIZE   (64*1024)

Definition at line 100 of file elf64-alpha.c.

#define MINUS_ONE   (((bfd_vma)0) - 1)

Definition at line 454 of file elf64-alpha.c.

#define NEW_PLT_ENTRY_SIZE   4

Definition at line 93 of file elf64-alpha.c.

#define NEW_PLT_HEADER_SIZE   36

Definition at line 92 of file elf64-alpha.c.

#define NO_COFF_LINENOS

Definition at line 36 of file elf64-alpha.c.

#define NO_COFF_RELOCS

Definition at line 34 of file elf64-alpha.c.

#define NO_COFF_SYMBOLS

Definition at line 35 of file elf64-alpha.c.

#define OLD_PLT_ENTRY_SIZE   12

Definition at line 91 of file elf64-alpha.c.

#define OLD_PLT_HEADER_SIZE   32

Definition at line 90 of file elf64-alpha.c.

#define OP_BR   0x30

Definition at line 56 of file elf64-alpha.c.

#define OP_BSR   0x34

Definition at line 57 of file elf64-alpha.c.

#define OP_LDA   0x08

Definition at line 53 of file elf64-alpha.c.

#define OP_LDAH   0x09

Definition at line 54 of file elf64-alpha.c.

#define OP_LDQ   0x29

Definition at line 55 of file elf64-alpha.c.

Definition at line 97 of file elf64-alpha.c.

Definition at line 95 of file elf64-alpha.c.

#define READ (   ptr,
  offset,
  count,
  size,
  type 
)
Value:
if (symhdr->count == 0)                                        \
    debug->ptr = NULL;                                                \
  else                                                         \
    {                                                          \
      bfd_size_type amt = (bfd_size_type) size * symhdr->count;              \
      debug->ptr = (type) bfd_malloc (amt);                           \
      if (debug->ptr == NULL)                                         \
       goto error_return;                                      \
      if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0   \
         || bfd_bread (debug->ptr, amt, abfd) != amt)                 \
       goto error_return;                                      \
    }
#define SKIP_HOWTO (   N)    HOWTO(N, 0, 0, 0, 0, 0, 0, elf64_alpha_reloc_bad, 0, 0, 0, 0, 0)

Definition at line 456 of file elf64-alpha.c.

#define TARGET_LITTLE_NAME   "elf64-alpha"

Definition at line 5375 of file elf64-alpha.c.

#define TARGET_LITTLE_NAME   "elf64-alpha-freebsd"

Definition at line 5375 of file elf64-alpha.c.

Definition at line 5373 of file elf64-alpha.c.

Definition at line 5373 of file elf64-alpha.c.


Function Documentation

static int alpha_dynamic_entries_for_reloc ( int  r_type,
int  dynamic,
int  shared 
) [static]

Definition at line 2561 of file elf64-alpha.c.

{
  switch (r_type)
    {
    /* May appear in GOT entries.  */
    case R_ALPHA_TLSGD:
      return (dynamic ? 2 : shared ? 1 : 0);
    case R_ALPHA_TLSLDM:
      return shared;
    case R_ALPHA_LITERAL:
    case R_ALPHA_GOTTPREL:
      return dynamic || shared;
    case R_ALPHA_GOTDTPREL:
      return dynamic;

    /* May appear in data sections.  */
    case R_ALPHA_REFLONG:
    case R_ALPHA_REFQUAD:
    case R_ALPHA_TPREL64:
      return dynamic || shared;

    /* Everything else is illegal.  We'll issue an error during
       relocate_section.  */
    default:
      return 0;
    }
}

Here is the caller graph for this function:

Definition at line 220 of file elf64-alpha.c.

{
  return _bfd_elf_dynamic_symbol_p (h, info, 0);
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean elf64_alpha_add_symbol_hook ( bfd abfd,
struct bfd_link_info info,
Elf_Internal_Sym *  sym,
const char **namep  ATTRIBUTE_UNUSED,
flagword *flagsp  ATTRIBUTE_UNUSED,
asection **  secp,
bfd_vma valp 
) [static]

Definition at line 1190 of file elf64-alpha.c.

{
  if (sym->st_shndx == SHN_COMMON
      && !info->relocatable
      && sym->st_size <= elf_gp_size (abfd))
    {
      /* Common symbols less than or equal to -G nn bytes are
        automatically put into .sbss.  */

      asection *scomm = bfd_get_section_by_name (abfd, ".scommon");

      if (scomm == NULL)
       {
         scomm = bfd_make_section_with_flags (abfd, ".scommon",
                                          (SEC_ALLOC
                                          | SEC_IS_COMMON
                                          | SEC_LINKER_CREATED));
         if (scomm == NULL)
           return FALSE;
       }

      *secp = scomm;
      *valp = sym->st_size;
    }

  return TRUE;
}

Here is the call graph for this function:

Definition at line 2003 of file elf64-alpha.c.

{
  bfd *dynobj;
  asection *s;
  struct alpha_elf_link_hash_entry *ah;

  dynobj = elf_hash_table(info)->dynobj;
  ah = (struct alpha_elf_link_hash_entry *)h;

  /* Now that we've seen all of the input symbols, finalize our decision
     about whether this symbol should get a .plt entry.  Irritatingly, it
     is common for folk to leave undefined symbols in shared libraries,
     and they still expect lazy binding; accept undefined symbols in lieu
     of STT_FUNC.  */
  if (alpha_elf_dynamic_symbol_p (h, info) && elf64_alpha_want_plt (ah))
    {
      h->needs_plt = TRUE;

      s = bfd_get_section_by_name(dynobj, ".plt");
      if (!s && !elf64_alpha_create_dynamic_sections (dynobj, info))
       return FALSE;

      /* We need one plt entry per got subsection.  Delay allocation of
        the actual plt entries until size_plt_section, called from
        size_dynamic_sections or during relaxation.  */

      return TRUE;
    }
  else
    h->needs_plt = FALSE;

  /* If this is a weak symbol, and there is a real definition, the
     processor independent code will have arranged for us to see the
     real definition first, and we can just use the same value.  */
  if (h->u.weakdef != NULL)
    {
      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
                || h->u.weakdef->root.type == bfd_link_hash_defweak);
      h->root.u.def.section = h->u.weakdef->root.u.def.section;
      h->root.u.def.value = h->u.weakdef->root.u.def.value;
      return TRUE;
    }

  /* This is a reference to a symbol defined by a dynamic object which
     is not a function.  The Alpha, since it uses .got entries for all
     symbols even in regular objects, does not need the hackery of a
     .dynbss section and COPY dynamic relocations.  */

  return TRUE;
}

Here is the call graph for this function:

static bfd_boolean elf64_alpha_always_size_sections ( bfd *output_bfd  ATTRIBUTE_UNUSED,
struct bfd_link_info info 
) [static]

Definition at line 2526 of file elf64-alpha.c.

{
  bfd *i;

  if (info->relocatable)
    return TRUE;

  /* First, take care of the indirect symbols created by versioning.  */
  alpha_elf_link_hash_traverse (alpha_elf_hash_table (info),
                            elf64_alpha_merge_ind_symbols,
                            NULL);

  if (!elf64_alpha_size_got_sections (info))
    return FALSE;

  /* Allocate space for all of the .got subsections.  */
  i = alpha_elf_hash_table (info)->got_list;
  for ( ; i ; i = alpha_elf_tdata(i)->got_link_next)
    {
      asection *s = alpha_elf_tdata(i)->got;
      if (s->size > 0)
       {
         s->contents = (bfd_byte *) bfd_zalloc (i, s->size);
         if (s->contents == NULL)
           return FALSE;
       }
    }

  return TRUE;
}

Here is the call graph for this function:

Definition at line 267 of file elf64-alpha.c.

{
  struct alpha_elf_link_hash_table *ret;
  bfd_size_type amt = sizeof (struct alpha_elf_link_hash_table);

  ret = (struct alpha_elf_link_hash_table *) bfd_zmalloc (amt);
  if (ret == (struct alpha_elf_link_hash_table *) NULL)
    return NULL;

  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
                                  elf64_alpha_link_hash_newfunc,
                                  sizeof (struct alpha_elf_link_hash_entry)))
    {
      free (ret);
      return NULL;
    }

  return &ret->root.root;
}

Here is the call graph for this function:

static reloc_howto_type* elf64_alpha_bfd_reloc_name_lookup ( bfd *abfd  ATTRIBUTE_UNUSED,
const char *  r_name 
) [static]

Definition at line 1059 of file elf64-alpha.c.

{
  unsigned int i;

  for (i = 0;
       i < (sizeof (elf64_alpha_howto_table)
           / sizeof (elf64_alpha_howto_table[0]));
       i++)
    if (elf64_alpha_howto_table[i].name != NULL
       && strcasecmp (elf64_alpha_howto_table[i].name, r_name) == 0)
      return &elf64_alpha_howto_table[i];

  return NULL;
}

Here is the call graph for this function:

static reloc_howto_type* elf64_alpha_bfd_reloc_type_lookup ( bfd *abfd  ATTRIBUTE_UNUSED,
bfd_reloc_code_real_type  code 
) [static]

Definition at line 1044 of file elf64-alpha.c.

{
  const struct elf_reloc_map *i, *e;
  i = e = elf64_alpha_reloc_map;
  e += sizeof (elf64_alpha_reloc_map) / sizeof (struct elf_reloc_map);
  for (; i != e; ++i)
    {
      if (i->bfd_reloc_val == code)
       return &elf64_alpha_howto_table[i->elf_reloc_val];
    }
  return 0;
}

Definition at line 2592 of file elf64-alpha.c.

{
  bfd_boolean dynamic;
  struct alpha_elf_reloc_entry *relent;
  unsigned long entries;

  if (h->root.root.type == bfd_link_hash_warning)
    h = (struct alpha_elf_link_hash_entry *) h->root.root.u.i.link;

  /* If the symbol was defined as a common symbol in a regular object
     file, and there was no definition in any dynamic object, then the
     linker will have allocated space for the symbol in a common
     section but the ELF_LINK_HASH_DEF_REGULAR flag will not have been
     set.  This is done for dynamic symbols in
     elf_adjust_dynamic_symbol but this is not done for non-dynamic
     symbols, somehow.  */
  if (!h->root.def_regular
      && h->root.ref_regular
      && !h->root.def_dynamic
      && (h->root.root.type == bfd_link_hash_defined
         || h->root.root.type == bfd_link_hash_defweak)
      && !(h->root.root.u.def.section->owner->flags & DYNAMIC))
    h->root.def_regular = 1;

  /* If the symbol is dynamic, we'll need all the relocations in their
     natural form.  If this is a shared object, and it has been forced
     local, we'll need the same number of RELATIVE relocations.  */
  dynamic = alpha_elf_dynamic_symbol_p (&h->root, info);

  /* If the symbol is a hidden undefined weak, then we never have any
     relocations.  Avoid the loop which may want to add RELATIVE relocs
     based on info->shared.  */
  if (h->root.root.type == bfd_link_hash_undefweak && !dynamic)
    return TRUE;

  for (relent = h->reloc_entries; relent; relent = relent->next)
    {
      entries = alpha_dynamic_entries_for_reloc (relent->rtype, dynamic,
                                           info->shared);
      if (entries)
       {
         relent->srel->size +=
           entries * sizeof (Elf64_External_Rela) * relent->count;
         if (relent->reltext)
           info->flags |= DT_TEXTREL;
       }
    }

  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static void elf64_alpha_calc_got_offsets ( struct bfd_link_info info) [static]

Definition at line 2330 of file elf64-alpha.c.

{
  bfd *i, *got_list = alpha_elf_hash_table(info)->got_list;

  /* First, zero out the .got sizes, as we may be recalculating the
     .got after optimizing it.  */
  for (i = got_list; i ; i = alpha_elf_tdata(i)->got_link_next)
    alpha_elf_tdata(i)->got->size = 0;

  /* Next, fill in the offsets for all the global entries.  */
  alpha_elf_link_hash_traverse (alpha_elf_hash_table (info),
                            elf64_alpha_calc_got_offsets_for_symbol,
                            NULL);

  /* Finally, fill in the offsets for the local entries.  */
  for (i = got_list; i ; i = alpha_elf_tdata(i)->got_link_next)
    {
      bfd_size_type got_offset = alpha_elf_tdata(i)->got->size;
      bfd *j;

      for (j = i; j ; j = alpha_elf_tdata(j)->in_got_link_next)
       {
         struct alpha_elf_got_entry **local_got_entries, *gotent;
         int k, n;

         local_got_entries = alpha_elf_tdata(j)->local_got_entries;
         if (!local_got_entries)
           continue;

         for (k = 0, n = elf_tdata(j)->symtab_hdr.sh_info; k < n; ++k)
           for (gotent = local_got_entries[k]; gotent; gotent = gotent->next)
             if (gotent->use_count > 0)
               {
                gotent->got_offset = got_offset;
                got_offset += alpha_got_entry_size (gotent->reloc_type);
               }
       }

      alpha_elf_tdata(i)->got->size = got_offset;
    }
}

Here is the call graph for this function:

Here is the caller graph for this function:

Definition at line 2306 of file elf64-alpha.c.

{
  struct alpha_elf_got_entry *gotent;

  if (h->root.root.type == bfd_link_hash_warning)
    h = (struct alpha_elf_link_hash_entry *) h->root.root.u.i.link;

  for (gotent = h->got_entries; gotent; gotent = gotent->next)
    if (gotent->use_count > 0)
      {
       struct alpha_elf_obj_tdata *td;
       bfd_size_type *plge;

       td = alpha_elf_tdata (gotent->gotobj);
       plge = &td->got->size;
       gotent->got_offset = *plge;
       *plge += alpha_got_entry_size (gotent->reloc_type);
      }

  return TRUE;
}

Here is the caller graph for this function:

static bfd_boolean elf64_alpha_can_merge_gots ( bfd a,
bfd b 
) [static]

Definition at line 2148 of file elf64-alpha.c.

{
  int total = alpha_elf_tdata (a)->total_got_size;
  bfd *bsub;

  /* Trivial quick fallout test.  */
  if (total + alpha_elf_tdata (b)->total_got_size <= MAX_GOT_SIZE)
    return TRUE;

  /* By their nature, local .got entries cannot be merged.  */
  if ((total += alpha_elf_tdata (b)->local_got_size) > MAX_GOT_SIZE)
    return FALSE;

  /* Failing the common trivial comparison, we must effectively
     perform the merge.  Not actually performing the merge means that
     we don't have to store undo information in case we fail.  */
  for (bsub = b; bsub ; bsub = alpha_elf_tdata (bsub)->in_got_link_next)
    {
      struct alpha_elf_link_hash_entry **hashes = alpha_elf_sym_hashes (bsub);
      Elf_Internal_Shdr *symtab_hdr = &elf_tdata (bsub)->symtab_hdr;
      int i, n;

      n = NUM_SHDR_ENTRIES (symtab_hdr) - symtab_hdr->sh_info;
      for (i = 0; i < n; ++i)
       {
         struct alpha_elf_got_entry *ae, *be;
         struct alpha_elf_link_hash_entry *h;

         h = hashes[i];
         while (h->root.root.type == bfd_link_hash_indirect
                || h->root.root.type == bfd_link_hash_warning)
           h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;

         for (be = h->got_entries; be ; be = be->next)
           {
             if (be->use_count == 0)
               continue;
             if (be->gotobj != b)
               continue;

             for (ae = h->got_entries; ae ; ae = ae->next)
               if (ae->gotobj == a
                  && ae->reloc_type == be->reloc_type
                  && ae->addend == be->addend)
                goto global_found;

             total += alpha_got_entry_size (be->reloc_type);
             if (total > MAX_GOT_SIZE)
               return FALSE;
           global_found:;
           }
       }
    }

  return TRUE;
}

Here is the caller graph for this function:

static bfd_boolean elf64_alpha_check_relocs ( bfd abfd,
struct bfd_link_info info,
asection sec,
const Elf_Internal_Rela relocs 
) [static]

Definition at line 1735 of file elf64-alpha.c.

{
  bfd *dynobj;
  asection *sreloc;
  const char *rel_sec_name;
  Elf_Internal_Shdr *symtab_hdr;
  struct alpha_elf_link_hash_entry **sym_hashes;
  const Elf_Internal_Rela *rel, *relend;
  bfd_size_type amt;

  if (info->relocatable)
    return TRUE;

  /* Don't do anything special with non-loaded, non-alloced sections.
     In particular, any relocs in such sections should not affect GOT
     and PLT reference counting (ie. we don't allow them to create GOT
     or PLT entries), there's no possibility or desire to optimize TLS
     relocs, and there's not much point in propagating relocs to shared
     libs that the dynamic linker won't relocate.  */
  if ((sec->flags & SEC_ALLOC) == 0)
    return TRUE;

  dynobj = elf_hash_table(info)->dynobj;
  if (dynobj == NULL)
    elf_hash_table(info)->dynobj = dynobj = abfd;

  sreloc = NULL;
  rel_sec_name = NULL;
  symtab_hdr = &elf_tdata(abfd)->symtab_hdr;
  sym_hashes = alpha_elf_sym_hashes(abfd);

  relend = relocs + sec->reloc_count;
  for (rel = relocs; rel < relend; ++rel)
    {
      enum {
       NEED_GOT = 1,
       NEED_GOT_ENTRY = 2,
       NEED_DYNREL = 4
      };

      unsigned long r_symndx, r_type;
      struct alpha_elf_link_hash_entry *h;
      unsigned int gotent_flags;
      bfd_boolean maybe_dynamic;
      unsigned int need;
      bfd_vma addend;

      r_symndx = ELF64_R_SYM (rel->r_info);
      if (r_symndx < symtab_hdr->sh_info)
       h = NULL;
      else
       {
         h = sym_hashes[r_symndx - symtab_hdr->sh_info];

         while (h->root.root.type == bfd_link_hash_indirect
               || h->root.root.type == bfd_link_hash_warning)
           h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;

         h->root.ref_regular = 1;
       }

      /* We can only get preliminary data on whether a symbol is
         locally or externally defined, as not all of the input files
         have yet been processed.  Do something with what we know, as
         this may help reduce memory usage and processing time later.  */
      maybe_dynamic = FALSE;
      if (h && ((info->shared
               && (!info->symbolic
                   || info->unresolved_syms_in_shared_libs == RM_IGNORE))
              || !h->root.def_regular
              || h->root.root.type == bfd_link_hash_defweak))
        maybe_dynamic = TRUE;

      need = 0;
      gotent_flags = 0;
      r_type = ELF64_R_TYPE (rel->r_info);
      addend = rel->r_addend;

      switch (r_type)
       {
       case R_ALPHA_LITERAL:
         need = NEED_GOT | NEED_GOT_ENTRY;

         /* Remember how this literal is used from its LITUSEs.
            This will be important when it comes to decide if we can
            create a .plt entry for a function symbol.  */
         while (++rel < relend && ELF64_R_TYPE (rel->r_info) == R_ALPHA_LITUSE)
           if (rel->r_addend >= 1 && rel->r_addend <= 6)
             gotent_flags |= 1 << rel->r_addend;
         --rel;

         /* No LITUSEs -- presumably the address is used somehow.  */
         if (gotent_flags == 0)
           gotent_flags = ALPHA_ELF_LINK_HASH_LU_ADDR;
         break;

       case R_ALPHA_GPDISP:
       case R_ALPHA_GPREL16:
       case R_ALPHA_GPREL32:
       case R_ALPHA_GPRELHIGH:
       case R_ALPHA_GPRELLOW:
       case R_ALPHA_BRSGP:
         need = NEED_GOT;
         break;

       case R_ALPHA_REFLONG:
       case R_ALPHA_REFQUAD:
         if (info->shared || maybe_dynamic)
           need = NEED_DYNREL;
         break;

       case R_ALPHA_TLSLDM:
         /* The symbol for a TLSLDM reloc is ignored.  Collapse the
            reloc to the 0 symbol so that they all match.  */
         r_symndx = 0;
         h = 0;
         maybe_dynamic = FALSE;
         /* FALLTHRU */

       case R_ALPHA_TLSGD:
       case R_ALPHA_GOTDTPREL:
         need = NEED_GOT | NEED_GOT_ENTRY;
         break;

       case R_ALPHA_GOTTPREL:
         need = NEED_GOT | NEED_GOT_ENTRY;
         gotent_flags = ALPHA_ELF_LINK_HASH_TLS_IE;
         if (info->shared)
           info->flags |= DF_STATIC_TLS;
         break;

       case R_ALPHA_TPREL64:
         if (info->shared || maybe_dynamic)
           need = NEED_DYNREL;
         if (info->shared)
           info->flags |= DF_STATIC_TLS;
         break;
       }

      if (need & NEED_GOT)
       {
         if (alpha_elf_tdata(abfd)->gotobj == NULL)
           {
             if (!elf64_alpha_create_got_section (abfd, info))
              return FALSE;
           }
       }

      if (need & NEED_GOT_ENTRY)
       {
         struct alpha_elf_got_entry *gotent;

         gotent = get_got_entry (abfd, h, r_type, r_symndx, addend);
         if (!gotent)
           return FALSE;

         if (gotent_flags)
           {
             gotent->flags |= gotent_flags;
             if (h)
              {
                gotent_flags |= h->flags;
                h->flags = gotent_flags;

                /* Make a guess as to whether a .plt entry is needed.  */
                /* ??? It appears that we won't make it into
                   adjust_dynamic_symbol for symbols that remain
                   totally undefined.  Copying this check here means
                   we can create a plt entry for them too.  */
                h->root.needs_plt
                  = (maybe_dynamic && elf64_alpha_want_plt (h));
              }
           }
       }

      if (need & NEED_DYNREL)
       {
         if (rel_sec_name == NULL)
           {
             rel_sec_name = (bfd_elf_string_from_elf_section
                           (abfd, elf_elfheader(abfd)->e_shstrndx,
                            elf_section_data(sec)->rel_hdr.sh_name));
             if (rel_sec_name == NULL)
              return FALSE;

             BFD_ASSERT (CONST_STRNEQ (rel_sec_name, ".rela")
                       && strcmp (bfd_get_section_name (abfd, sec),
                                 rel_sec_name+5) == 0);
           }

         /* We need to create the section here now whether we eventually
            use it or not so that it gets mapped to an output section by
            the linker.  If not used, we'll kill it in
            size_dynamic_sections.  */
         if (sreloc == NULL)
           {
             sreloc = bfd_get_section_by_name (dynobj, rel_sec_name);
             if (sreloc == NULL)
              {
                flagword flags;

                flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
                        | SEC_LINKER_CREATED | SEC_READONLY);
                if (sec->flags & SEC_ALLOC)
                  flags |= SEC_ALLOC | SEC_LOAD;
                sreloc = bfd_make_section_with_flags (dynobj,
                                                 rel_sec_name,
                                                 flags);
                if (sreloc == NULL
                    || !bfd_set_section_alignment (dynobj, sreloc, 3))
                  return FALSE;
              }
           }

         if (h)
           {
             /* Since we havn't seen all of the input symbols yet, we
               don't know whether we'll actually need a dynamic relocation
               entry for this reloc.  So make a record of it.  Once we
               find out if this thing needs dynamic relocation we'll
               expand the relocation sections by the appropriate amount.  */

             struct alpha_elf_reloc_entry *rent;

             for (rent = h->reloc_entries; rent; rent = rent->next)
              if (rent->rtype == r_type && rent->srel == sreloc)
                break;

             if (!rent)
              {
                amt = sizeof (struct alpha_elf_reloc_entry);
                rent = (struct alpha_elf_reloc_entry *) bfd_alloc (abfd, amt);
                if (!rent)
                  return FALSE;

                rent->srel = sreloc;
                rent->rtype = r_type;
                rent->count = 1;
                rent->reltext = (sec->flags & SEC_READONLY) != 0;

                rent->next = h->reloc_entries;
                h->reloc_entries = rent;
              }
             else
              rent->count++;
           }
         else if (info->shared)
           {
             /* If this is a shared library, and the section is to be
               loaded into memory, we need a RELATIVE reloc.  */
             sreloc->size += sizeof (Elf64_External_Rela);
             if (sec->flags & SEC_READONLY)
              info->flags |= DF_TEXTREL;
           }
       }
    }

  return TRUE;
}

Here is the call graph for this function:

static bfd_boolean elf64_alpha_create_dynamic_sections ( bfd abfd,
struct bfd_link_info info 
) [static]

Definition at line 1251 of file elf64-alpha.c.

{
  asection *s;
  flagword flags;
  struct elf_link_hash_entry *h;

  /* We need to create .plt, .rela.plt, .got, and .rela.got sections.  */

  flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS | SEC_IN_MEMORY
          | SEC_LINKER_CREATED
          | (elf64_alpha_use_secureplt ? SEC_READONLY : 0));
  s = bfd_make_section_anyway_with_flags (abfd, ".plt", flags);
  if (s == NULL || ! bfd_set_section_alignment (abfd, s, 4))
    return FALSE;

  /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
     .plt section.  */
  h = _bfd_elf_define_linkage_sym (abfd, info, s,
                               "_PROCEDURE_LINKAGE_TABLE_");
  elf_hash_table (info)->hplt = h;
  if (h == NULL)
    return FALSE;

  flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
          | SEC_LINKER_CREATED | SEC_READONLY);
  s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt", flags);
  if (s == NULL || ! bfd_set_section_alignment (abfd, s, 3))
    return FALSE;

  if (elf64_alpha_use_secureplt)
    {
      flags = SEC_ALLOC | SEC_LINKER_CREATED;
      s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
      if (s == NULL || ! bfd_set_section_alignment (abfd, s, 3))
       return FALSE;
    }

  /* We may or may not have created a .got section for this object, but
     we definitely havn't done the rest of the work.  */

  if (alpha_elf_tdata(abfd)->gotobj == NULL)
    {
      if (!elf64_alpha_create_got_section (abfd, info))
       return FALSE;
    }

  flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
          | SEC_LINKER_CREATED | SEC_READONLY);
  s = bfd_make_section_anyway_with_flags (abfd, ".rela.got", flags);
  if (s == NULL
      || !bfd_set_section_alignment (abfd, s, 3))
    return FALSE;

  /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the
     dynobj's .got section.  We don't do this in the linker script
     because we don't want to define the symbol if we are not creating
     a global offset table.  */
  h = _bfd_elf_define_linkage_sym (abfd, info, alpha_elf_tdata(abfd)->got,
                               "_GLOBAL_OFFSET_TABLE_");
  elf_hash_table (info)->hgot = h;
  if (h == NULL)
    return FALSE;

  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean elf64_alpha_create_got_section ( bfd abfd,
struct bfd_link_info *info  ATTRIBUTE_UNUSED 
) [static]

Definition at line 1225 of file elf64-alpha.c.

{
  flagword flags;
  asection *s;

  flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
          | SEC_LINKER_CREATED);
  s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
  if (s == NULL
      || !bfd_set_section_alignment (abfd, s, 3))
    return FALSE;

  alpha_elf_tdata (abfd)->got = s;

  /* Make sure the object's gotobj is set to itself so that we default
     to every object with its own .got.  We'll merge .gots later once
     we've collected each object's info.  */
  alpha_elf_tdata (abfd)->gotobj = abfd;

  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_reloc_status_type elf64_alpha_do_reloc_gpdisp ( bfd abfd,
bfd_vma  gpdisp,
bfd_byte p_ldah,
bfd_byte p_lda 
) [static]

Definition at line 370 of file elf64-alpha.c.

{
  bfd_reloc_status_type ret = bfd_reloc_ok;
  bfd_vma addend;
  unsigned long i_ldah, i_lda;

  i_ldah = bfd_get_32 (abfd, p_ldah);
  i_lda = bfd_get_32 (abfd, p_lda);

  /* Complain if the instructions are not correct.  */
  if (((i_ldah >> 26) & 0x3f) != 0x09
      || ((i_lda >> 26) & 0x3f) != 0x08)
    ret = bfd_reloc_dangerous;

  /* Extract the user-supplied offset, mirroring the sign extensions
     that the instructions perform.  */
  addend = ((i_ldah & 0xffff) << 16) | (i_lda & 0xffff);
  addend = (addend ^ 0x80008000) - 0x80008000;

  gpdisp += addend;

  if ((bfd_signed_vma) gpdisp < -(bfd_signed_vma) 0x80000000
      || (bfd_signed_vma) gpdisp >= (bfd_signed_vma) 0x7fff8000)
    ret = bfd_reloc_overflow;

  /* compensate for the sign extension again.  */
  i_ldah = ((i_ldah & 0xffff0000)
           | (((gpdisp >> 16) + ((gpdisp >> 15) & 1)) & 0xffff));
  i_lda = (i_lda & 0xffff0000) | (gpdisp & 0xffff);

  bfd_put_32 (abfd, (bfd_vma) i_ldah, p_ldah);
  bfd_put_32 (abfd, (bfd_vma) i_lda, p_lda);

  return ret;
}

Here is the caller graph for this function:

static void elf64_alpha_emit_dynrel ( bfd abfd,
struct bfd_link_info info,
asection sec,
asection srel,
bfd_vma  offset,
long  dynindx,
long  rtype,
bfd_vma  addend 
) [static]

Definition at line 3890 of file elf64-alpha.c.

{
  Elf_Internal_Rela outrel;
  bfd_byte *loc;

  BFD_ASSERT (srel != NULL);

  outrel.r_info = ELF64_R_INFO (dynindx, rtype);
  outrel.r_addend = addend;

  offset = _bfd_elf_section_offset (abfd, info, sec, offset);
  if ((offset | 1) != (bfd_vma) -1)
    outrel.r_offset = sec->output_section->vma + sec->output_offset + offset;
  else
    memset (&outrel, 0, sizeof (outrel));

  loc = srel->contents;
  loc += srel->reloc_count++ * sizeof (Elf64_External_Rela);
  bfd_elf64_swap_reloca_out (abfd, &outrel, loc);
  BFD_ASSERT (sizeof (Elf64_External_Rela) * srel->reloc_count <= srel->size);
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean elf64_alpha_fake_sections ( bfd abfd,
Elf_Internal_Shdr hdr,
asection sec 
) [static]

Definition at line 1160 of file elf64-alpha.c.

{
  register const char *name;

  name = bfd_get_section_name (abfd, sec);

  if (strcmp (name, ".mdebug") == 0)
    {
      hdr->sh_type = SHT_ALPHA_DEBUG;
      /* In a shared object on Irix 5.3, the .mdebug section has an
         entsize of 0.  FIXME: Does this matter?  */
      if ((abfd->flags & DYNAMIC) != 0 )
       hdr->sh_entsize = 0;
      else
       hdr->sh_entsize = 1;
    }
  else if ((sec->flags & SEC_SMALL_DATA)
          || strcmp (name, ".sdata") == 0
          || strcmp (name, ".sbss") == 0
          || strcmp (name, ".lit4") == 0
          || strcmp (name, ".lit8") == 0)
    hdr->sh_flags |= SHF_ALPHA_GPREL;

  return TRUE;
}

Here is the call graph for this function:

static void elf64_alpha_fbsd_post_process_headers ( bfd abfd,
struct bfd_link_info *link_info  ATTRIBUTE_UNUSED 
) [static]

Definition at line 5384 of file elf64-alpha.c.

{
  Elf_Internal_Ehdr * i_ehdrp;     /* ELF file header, internal form.  */

  i_ehdrp = elf_elfheader (abfd);

  /* Put an ABI label supported by FreeBSD >= 4.1.  */
  i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
#ifdef OLD_FREEBSD_ABI_LABEL
  /* The ABI label supported by FreeBSD <= 4.0 is quite nonstandard.  */
  memcpy (&i_ehdrp->e_ident[EI_ABIVERSION], "FreeBSD", 8);
#endif
}
static bfd_boolean elf64_alpha_final_link ( bfd abfd,
struct bfd_link_info info 
) [static]

Definition at line 4925 of file elf64-alpha.c.

{
  asection *o;
  struct bfd_link_order *p;
  asection *mdebug_sec;
  struct ecoff_debug_info debug;
  const struct ecoff_debug_swap *swap
    = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
  HDRR *symhdr = &debug.symbolic_header;
  PTR mdebug_handle = NULL;

  /* Go through the sections and collect the mdebug information.  */
  mdebug_sec = NULL;
  for (o = abfd->sections; o != (asection *) NULL; o = o->next)
    {
      if (strcmp (o->name, ".mdebug") == 0)
       {
         struct extsym_info einfo;

         /* We have found the .mdebug section in the output file.
            Look through all the link_orders comprising it and merge
            the information together.  */
         symhdr->magic = swap->sym_magic;
         /* FIXME: What should the version stamp be?  */
         symhdr->vstamp = 0;
         symhdr->ilineMax = 0;
         symhdr->cbLine = 0;
         symhdr->idnMax = 0;
         symhdr->ipdMax = 0;
         symhdr->isymMax = 0;
         symhdr->ioptMax = 0;
         symhdr->iauxMax = 0;
         symhdr->issMax = 0;
         symhdr->issExtMax = 0;
         symhdr->ifdMax = 0;
         symhdr->crfd = 0;
         symhdr->iextMax = 0;

         /* We accumulate the debugging information itself in the
            debug_info structure.  */
         debug.line = NULL;
         debug.external_dnr = NULL;
         debug.external_pdr = NULL;
         debug.external_sym = NULL;
         debug.external_opt = NULL;
         debug.external_aux = NULL;
         debug.ss = NULL;
         debug.ssext = debug.ssext_end = NULL;
         debug.external_fdr = NULL;
         debug.external_rfd = NULL;
         debug.external_ext = debug.external_ext_end = NULL;

         mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
         if (mdebug_handle == (PTR) NULL)
           return FALSE;

         if (1)
           {
             asection *s;
             EXTR esym;
             bfd_vma last = 0;
             unsigned int i;
             static const char * const name[] =
              {
                ".text", ".init", ".fini", ".data",
                ".rodata", ".sdata", ".sbss", ".bss"
              };
             static const int sc[] = { scText, scInit, scFini, scData,
                                     scRData, scSData, scSBss, scBss };

             esym.jmptbl = 0;
             esym.cobol_main = 0;
             esym.weakext = 0;
             esym.reserved = 0;
             esym.ifd = ifdNil;
             esym.asym.iss = issNil;
             esym.asym.st = stLocal;
             esym.asym.reserved = 0;
             esym.asym.index = indexNil;
             for (i = 0; i < 8; i++)
              {
                esym.asym.sc = sc[i];
                s = bfd_get_section_by_name (abfd, name[i]);
                if (s != NULL)
                  {
                    esym.asym.value = s->vma;
                    last = s->vma + s->size;
                  }
                else
                  esym.asym.value = last;

                if (! bfd_ecoff_debug_one_external (abfd, &debug, swap,
                                                name[i], &esym))
                  return FALSE;
              }
           }

         for (p = o->map_head.link_order;
              p != (struct bfd_link_order *) NULL;
              p = p->next)
           {
             asection *input_section;
             bfd *input_bfd;
             const struct ecoff_debug_swap *input_swap;
             struct ecoff_debug_info input_debug;
             char *eraw_src;
             char *eraw_end;

             if (p->type != bfd_indirect_link_order)
              {
                if (p->type == bfd_data_link_order)
                  continue;
                abort ();
              }

             input_section = p->u.indirect.section;
             input_bfd = input_section->owner;

             if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
                || (get_elf_backend_data (input_bfd)
                    ->elf_backend_ecoff_debug_swap) == NULL)
              {
                /* I don't know what a non ALPHA ELF bfd would be
                   doing with a .mdebug section, but I don't really
                   want to deal with it.  */
                continue;
              }

             input_swap = (get_elf_backend_data (input_bfd)
                         ->elf_backend_ecoff_debug_swap);

             BFD_ASSERT (p->size == input_section->size);

             /* The ECOFF linking code expects that we have already
               read in the debugging information and set up an
               ecoff_debug_info structure, so we do that now.  */
             if (!elf64_alpha_read_ecoff_info (input_bfd, input_section,
                                          &input_debug))
              return FALSE;

             if (! (bfd_ecoff_debug_accumulate
                   (mdebug_handle, abfd, &debug, swap, input_bfd,
                    &input_debug, input_swap, info)))
              return FALSE;

             /* Loop through the external symbols.  For each one with
               interesting information, try to find the symbol in
               the linker global hash table and save the information
               for the output external symbols.  */
             eraw_src = input_debug.external_ext;
             eraw_end = (eraw_src
                       + (input_debug.symbolic_header.iextMax
                          * input_swap->external_ext_size));
             for (;
                 eraw_src < eraw_end;
                 eraw_src += input_swap->external_ext_size)
              {
                EXTR ext;
                const char *name;
                struct alpha_elf_link_hash_entry *h;

                (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
                if (ext.asym.sc == scNil
                    || ext.asym.sc == scUndefined
                    || ext.asym.sc == scSUndefined)
                  continue;

                name = input_debug.ssext + ext.asym.iss;
                h = alpha_elf_link_hash_lookup (alpha_elf_hash_table (info),
                                            name, FALSE, FALSE, TRUE);
                if (h == NULL || h->esym.ifd != -2)
                  continue;

                if (ext.ifd != -1)
                  {
                    BFD_ASSERT (ext.ifd
                              < input_debug.symbolic_header.ifdMax);
                    ext.ifd = input_debug.ifdmap[ext.ifd];
                  }

                h->esym = ext;
              }

             /* Free up the information we just read.  */
             free (input_debug.line);
             free (input_debug.external_dnr);
             free (input_debug.external_pdr);
             free (input_debug.external_sym);
             free (input_debug.external_opt);
             free (input_debug.external_aux);
             free (input_debug.ss);
             free (input_debug.ssext);
             free (input_debug.external_fdr);
             free (input_debug.external_rfd);
             free (input_debug.external_ext);

             /* Hack: reset the SEC_HAS_CONTENTS flag so that
               elf_link_input_bfd ignores this section.  */
             input_section->flags &=~ SEC_HAS_CONTENTS;
           }

         /* Build the external symbol information.  */
         einfo.abfd = abfd;
         einfo.info = info;
         einfo.debug = &debug;
         einfo.swap = swap;
         einfo.failed = FALSE;
         elf_link_hash_traverse (elf_hash_table (info),
                              elf64_alpha_output_extsym,
                              (PTR) &einfo);
         if (einfo.failed)
           return FALSE;

         /* Set the size of the .mdebug section.  */
         o->size = bfd_ecoff_debug_size (abfd, &debug, swap);

         /* Skip this section later on (I don't think this currently
            matters, but someday it might).  */
         o->map_head.link_order = (struct bfd_link_order *) NULL;

         mdebug_sec = o;
       }
    }

  /* Invoke the regular ELF backend linker to do all the work.  */
  if (! bfd_elf_final_link (abfd, info))
    return FALSE;

  /* Now write out the computed sections.  */

  /* The .got subsections...  */
  {
    bfd *i, *dynobj = elf_hash_table(info)->dynobj;
    for (i = alpha_elf_hash_table(info)->got_list;
        i != NULL;
        i = alpha_elf_tdata(i)->got_link_next)
      {
       asection *sgot;

       /* elf_bfd_final_link already did everything in dynobj.  */
       if (i == dynobj)
         continue;

       sgot = alpha_elf_tdata(i)->got;
       if (! bfd_set_section_contents (abfd, sgot->output_section,
                                   sgot->contents,
                                   (file_ptr) sgot->output_offset,
                                   sgot->size))
         return FALSE;
      }
  }

  if (mdebug_sec != (asection *) NULL)
    {
      BFD_ASSERT (abfd->output_has_begun);
      if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
                                          swap, info,
                                          mdebug_sec->filepos))
       return FALSE;

      bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
    }

  return TRUE;
}

Here is the call graph for this function:

static bfd_boolean elf64_alpha_find_nearest_line ( bfd abfd,
asection section,
asymbol **  symbols,
bfd_vma  offset,
const char **  filename_ptr,
const char **  functionname_ptr,
unsigned int line_ptr 
) [static]

Definition at line 1424 of file elf64-alpha.c.

{
  asection *msec;

  if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
                                 filename_ptr, functionname_ptr,
                                 line_ptr, 0,
                                 &elf_tdata (abfd)->dwarf2_find_line_info))
    return TRUE;

  msec = bfd_get_section_by_name (abfd, ".mdebug");
  if (msec != NULL)
    {
      flagword origflags;
      struct mips_elf_find_line *fi;
      const struct ecoff_debug_swap * const swap =
       get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;

      /* If we are called during a link, alpha_elf_final_link may have
        cleared the SEC_HAS_CONTENTS field.  We force it back on here
        if appropriate (which it normally will be).  */
      origflags = msec->flags;
      if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
       msec->flags |= SEC_HAS_CONTENTS;

      fi = elf_tdata (abfd)->find_line_info;
      if (fi == NULL)
       {
         bfd_size_type external_fdr_size;
         char *fraw_src;
         char *fraw_end;
         struct fdr *fdr_ptr;
         bfd_size_type amt = sizeof (struct mips_elf_find_line);

         fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
         if (fi == NULL)
           {
             msec->flags = origflags;
             return FALSE;
           }

         if (!elf64_alpha_read_ecoff_info (abfd, msec, &fi->d))
           {
             msec->flags = origflags;
             return FALSE;
           }

         /* Swap in the FDR information.  */
         amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
         fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
         if (fi->d.fdr == NULL)
           {
             msec->flags = origflags;
             return FALSE;
           }
         external_fdr_size = swap->external_fdr_size;
         fdr_ptr = fi->d.fdr;
         fraw_src = (char *) fi->d.external_fdr;
         fraw_end = (fraw_src
                    + fi->d.symbolic_header.ifdMax * external_fdr_size);
         for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
           (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);

         elf_tdata (abfd)->find_line_info = fi;

         /* Note that we don't bother to ever free this information.
             find_nearest_line is either called all the time, as in
             objdump -l, so the information should be saved, or it is
             rarely called, as in ld error messages, so the memory
             wasted is unimportant.  Still, it would probably be a
             good idea for free_cached_info to throw it away.  */
       }

      if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
                              &fi->i, filename_ptr, functionname_ptr,
                              line_ptr))
       {
         msec->flags = origflags;
         return TRUE;
       }

      msec->flags = origflags;
    }

  /* Fall back on the generic ELF find_nearest_line routine.  */

  return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
                                 filename_ptr, functionname_ptr,
                                 line_ptr);
}

Here is the call graph for this function:

static Elf_Internal_Rela* elf64_alpha_find_reloc_at_ofs ( Elf_Internal_Rela rel,
Elf_Internal_Rela relend,
bfd_vma  offset,
int  type 
) [static]

Definition at line 2912 of file elf64-alpha.c.

{
  while (rel < relend)
    {
      if (rel->r_offset == offset
         && ELF64_R_TYPE (rel->r_info) == (unsigned int) type)
       return rel;
      ++rel;
    }
  return NULL;
}

Here is the caller graph for this function:

static bfd_boolean elf64_alpha_finish_dynamic_sections ( bfd output_bfd,
struct bfd_link_info info 
) [static]

Definition at line 4792 of file elf64-alpha.c.

{
  bfd *dynobj;
  asection *sdyn;

  dynobj = elf_hash_table (info)->dynobj;
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");

  if (elf_hash_table (info)->dynamic_sections_created)
    {
      asection *splt, *sgotplt, *srelaplt;
      Elf64_External_Dyn *dyncon, *dynconend;
      bfd_vma plt_vma, gotplt_vma;

      splt = bfd_get_section_by_name (dynobj, ".plt");
      srelaplt = bfd_get_section_by_name (output_bfd, ".rela.plt");
      BFD_ASSERT (splt != NULL && sdyn != NULL);

      plt_vma = splt->output_section->vma + splt->output_offset;

      gotplt_vma = 0;
      if (elf64_alpha_use_secureplt)
       {
         sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
         BFD_ASSERT (sgotplt != NULL);
         if (sgotplt->size > 0)
           gotplt_vma = sgotplt->output_section->vma + sgotplt->output_offset;
       }

      dyncon = (Elf64_External_Dyn *) sdyn->contents;
      dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
      for (; dyncon < dynconend; dyncon++)
       {
         Elf_Internal_Dyn dyn;

         bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);

         switch (dyn.d_tag)
           {
           case DT_PLTGOT:
             dyn.d_un.d_ptr
              = elf64_alpha_use_secureplt ? gotplt_vma : plt_vma;
             break;
           case DT_PLTRELSZ:
             dyn.d_un.d_val = srelaplt ? srelaplt->size : 0;
             break;
           case DT_JMPREL:
             dyn.d_un.d_ptr = srelaplt ? srelaplt->vma : 0;
             break;

           case DT_RELASZ:
             /* My interpretation of the TIS v1.1 ELF document indicates
               that RELASZ should not include JMPREL.  This is not what
               the rest of the BFD does.  It is, however, what the
               glibc ld.so wants.  Do this fixup here until we found
               out who is right.  */
             if (srelaplt)
              dyn.d_un.d_val -= srelaplt->size;
             break;
           }

         bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
       }

      /* Initialize the plt header.  */
      if (splt->size > 0)
       {
         unsigned int insn;
         int ofs;

         if (elf64_alpha_use_secureplt)
           {
             ofs = gotplt_vma - (plt_vma + PLT_HEADER_SIZE);

             insn = INSN_ABC (INSN_SUBQ, 27, 28, 25);
             bfd_put_32 (output_bfd, insn, splt->contents);

             insn = INSN_ABO (INSN_LDAH, 28, 28, (ofs + 0x8000) >> 16);
             bfd_put_32 (output_bfd, insn, splt->contents + 4);

             insn = INSN_ABC (INSN_S4SUBQ, 25, 25, 25);
             bfd_put_32 (output_bfd, insn, splt->contents + 8);

             insn = INSN_ABO (INSN_LDA, 28, 28, ofs);
             bfd_put_32 (output_bfd, insn, splt->contents + 12);

             insn = INSN_ABO (INSN_LDQ, 27, 28, 0);
             bfd_put_32 (output_bfd, insn, splt->contents + 16);

             insn = INSN_ABC (INSN_ADDQ, 25, 25, 25);
             bfd_put_32 (output_bfd, insn, splt->contents + 20);

             insn = INSN_ABO (INSN_LDQ, 28, 28, 8);
             bfd_put_32 (output_bfd, insn, splt->contents + 24);

             insn = INSN_AB (INSN_JMP, 31, 27);
             bfd_put_32 (output_bfd, insn, splt->contents + 28);

             insn = INSN_AD (INSN_BR, 28, -PLT_HEADER_SIZE);
             bfd_put_32 (output_bfd, insn, splt->contents + 32);
           }
         else
           {
             insn = INSN_AD (INSN_BR, 27, 0);    /* br $27, .+4 */
             bfd_put_32 (output_bfd, insn, splt->contents);

             insn = INSN_ABO (INSN_LDQ, 27, 27, 12);
             bfd_put_32 (output_bfd, insn, splt->contents + 4);

             insn = INSN_UNOP;
             bfd_put_32 (output_bfd, insn, splt->contents + 8);

             insn = INSN_AB (INSN_JMP, 27, 27);
             bfd_put_32 (output_bfd, insn, splt->contents + 12);

             /* The next two words will be filled in by ld.so.  */
             bfd_put_64 (output_bfd, 0, splt->contents + 16);
             bfd_put_64 (output_bfd, 0, splt->contents + 24);
           }

         elf_section_data (splt->output_section)->this_hdr.sh_entsize = 0;
       }
    }

  return TRUE;
}

Here is the call graph for this function:

static bfd_boolean elf64_alpha_finish_dynamic_symbol ( bfd output_bfd,
struct bfd_link_info info,
struct elf_link_hash_entry h,
Elf_Internal_Sym *  sym 
) [static]

Definition at line 4643 of file elf64-alpha.c.

{
  struct alpha_elf_link_hash_entry *ah = (struct alpha_elf_link_hash_entry *)h;
  bfd *dynobj = elf_hash_table(info)->dynobj;

  if (h->needs_plt)
    {
      /* Fill in the .plt entry for this symbol.  */
      asection *splt, *sgot, *srel;
      Elf_Internal_Rela outrel;
      bfd_byte *loc;
      bfd_vma got_addr, plt_addr;
      bfd_vma plt_index;
      struct alpha_elf_got_entry *gotent;

      BFD_ASSERT (h->dynindx != -1);

      splt = bfd_get_section_by_name (dynobj, ".plt");
      BFD_ASSERT (splt != NULL);
      srel = bfd_get_section_by_name (dynobj, ".rela.plt");
      BFD_ASSERT (srel != NULL);

      for (gotent = ah->got_entries; gotent ; gotent = gotent->next)
       if (gotent->reloc_type == R_ALPHA_LITERAL
           && gotent->use_count > 0)
         {
           unsigned int insn;
           int disp;

           sgot = alpha_elf_tdata (gotent->gotobj)->got;
           BFD_ASSERT (sgot != NULL);

           BFD_ASSERT (gotent->got_offset != -1);
           BFD_ASSERT (gotent->plt_offset != -1);

           got_addr = (sgot->output_section->vma
                     + sgot->output_offset
                     + gotent->got_offset);
           plt_addr = (splt->output_section->vma
                     + splt->output_offset
                     + gotent->plt_offset);

           plt_index = (gotent->plt_offset-PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;

           /* Fill in the entry in the procedure linkage table.  */
           if (elf64_alpha_use_secureplt)
             {
              disp = (PLT_HEADER_SIZE - 4) - (gotent->plt_offset + 4);
              insn = INSN_AD (INSN_BR, 31, disp);
              bfd_put_32 (output_bfd, insn,
                         splt->contents + gotent->plt_offset);

              plt_index = ((gotent->plt_offset - NEW_PLT_HEADER_SIZE)
                          / NEW_PLT_ENTRY_SIZE);
             }
           else
             {
              disp = -(gotent->plt_offset + 4);
              insn = INSN_AD (INSN_BR, 28, disp);
              bfd_put_32 (output_bfd, insn,
                         splt->contents + gotent->plt_offset);
              bfd_put_32 (output_bfd, INSN_UNOP,
                         splt->contents + gotent->plt_offset + 4);
              bfd_put_32 (output_bfd, INSN_UNOP,
                         splt->contents + gotent->plt_offset + 8);

              plt_index = ((gotent->plt_offset - OLD_PLT_HEADER_SIZE)
                          / OLD_PLT_ENTRY_SIZE);
             }

           /* Fill in the entry in the .rela.plt section.  */
           outrel.r_offset = got_addr;
           outrel.r_info = ELF64_R_INFO(h->dynindx, R_ALPHA_JMP_SLOT);
           outrel.r_addend = 0;

           loc = srel->contents + plt_index * sizeof (Elf64_External_Rela);
           bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);

           /* Fill in the entry in the .got.  */
           bfd_put_64 (output_bfd, plt_addr,
                     sgot->contents + gotent->got_offset);
         }
    }
  else if (alpha_elf_dynamic_symbol_p (h, info))
    {
      /* Fill in the dynamic relocations for this symbol's .got entries.  */
      asection *srel;
      struct alpha_elf_got_entry *gotent;

      srel = bfd_get_section_by_name (dynobj, ".rela.got");
      BFD_ASSERT (srel != NULL);

      for (gotent = ((struct alpha_elf_link_hash_entry *) h)->got_entries;
          gotent != NULL;
          gotent = gotent->next)
       {
         asection *sgot;
         long r_type;

         if (gotent->use_count == 0)
           continue;

         sgot = alpha_elf_tdata (gotent->gotobj)->got;

         r_type = gotent->reloc_type;
         switch (r_type)
           {
           case R_ALPHA_LITERAL:
             r_type = R_ALPHA_GLOB_DAT;
             break;
           case R_ALPHA_TLSGD:
             r_type = R_ALPHA_DTPMOD64;
             break;
           case R_ALPHA_GOTDTPREL:
             r_type = R_ALPHA_DTPREL64;
             break;
           case R_ALPHA_GOTTPREL:
             r_type = R_ALPHA_TPREL64;
             break;
           case R_ALPHA_TLSLDM:
           default:
             abort ();
           }

         elf64_alpha_emit_dynrel (output_bfd, info, sgot, srel, 
                               gotent->got_offset, h->dynindx,
                               r_type, gotent->addend);

         if (gotent->reloc_type == R_ALPHA_TLSGD)
           elf64_alpha_emit_dynrel (output_bfd, info, sgot, srel, 
                                 gotent->got_offset + 8, h->dynindx,
                                 R_ALPHA_DTPREL64, gotent->addend);
       }
    }

  /* Mark some specially defined symbols as absolute.  */
  if (strcmp (h->root.root.string, "_DYNAMIC") == 0
      || h == elf_hash_table (info)->hgot
      || h == elf_hash_table (info)->hplt)
    sym->st_shndx = SHN_ABS;

  return TRUE;
}

Here is the call graph for this function:

static void elf64_alpha_info_to_howto ( bfd *abfd  ATTRIBUTE_UNUSED,
arelent cache_ptr,
Elf_Internal_Rela dst 
) [static]

Definition at line 1078 of file elf64-alpha.c.

{
  unsigned r_type = ELF64_R_TYPE(dst->r_info);
  BFD_ASSERT (r_type < (unsigned int) R_ALPHA_max);
  cache_ptr->howto = &elf64_alpha_howto_table[r_type];
}
static bfd_boolean elf64_alpha_is_local_label_name ( bfd *abfd  ATTRIBUTE_UNUSED,
const char *  name 
) [static]

Definition at line 1407 of file elf64-alpha.c.

{
  return name[0] == '$';
}
static struct bfd_hash_entry* elf64_alpha_link_hash_newfunc ( struct bfd_hash_entry entry,
struct bfd_hash_table table,
const char *  string 
) [static, read]

Definition at line 229 of file elf64-alpha.c.

{
  struct alpha_elf_link_hash_entry *ret =
    (struct alpha_elf_link_hash_entry *) entry;

  /* Allocate the structure if it has not already been allocated by a
     subclass.  */
  if (ret == (struct alpha_elf_link_hash_entry *) NULL)
    ret = ((struct alpha_elf_link_hash_entry *)
          bfd_hash_allocate (table,
                           sizeof (struct alpha_elf_link_hash_entry)));
  if (ret == (struct alpha_elf_link_hash_entry *) NULL)
    return (struct bfd_hash_entry *) ret;

  /* Call the allocation method of the superclass.  */
  ret = ((struct alpha_elf_link_hash_entry *)
        _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
                                 table, string));
  if (ret != (struct alpha_elf_link_hash_entry *) NULL)
    {
      /* Set local fields.  */
      memset (&ret->esym, 0, sizeof (EXTR));
      /* We use -2 as a marker to indicate that the information has
        not been set.  -1 means there is no associated ifd.  */
      ret->esym.ifd = -2;
      ret->flags = 0;
      ret->got_entries = NULL;
      ret->reloc_entries = NULL;
    }

  return (struct bfd_hash_entry *) ret;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static void elf64_alpha_merge_gots ( bfd a,
bfd b 
) [static]

Definition at line 2208 of file elf64-alpha.c.

{
  int total = alpha_elf_tdata (a)->total_got_size;
  bfd *bsub;

  /* Remember local expansion.  */
  {
    int e = alpha_elf_tdata (b)->local_got_size;
    total += e;
    alpha_elf_tdata (a)->local_got_size += e;
  }

  for (bsub = b; bsub ; bsub = alpha_elf_tdata (bsub)->in_got_link_next)
    {
      struct alpha_elf_got_entry **local_got_entries;
      struct alpha_elf_link_hash_entry **hashes;
      Elf_Internal_Shdr *symtab_hdr;
      int i, n;

      /* Let the local .got entries know they are part of a new subsegment.  */
      local_got_entries = alpha_elf_tdata (bsub)->local_got_entries;
      if (local_got_entries)
        {
         n = elf_tdata (bsub)->symtab_hdr.sh_info;
         for (i = 0; i < n; ++i)
           {
             struct alpha_elf_got_entry *ent;
             for (ent = local_got_entries[i]; ent; ent = ent->next)
               ent->gotobj = a;
           }
        }

      /* Merge the global .got entries.  */
      hashes = alpha_elf_sym_hashes (bsub);
      symtab_hdr = &elf_tdata (bsub)->symtab_hdr;

      n = NUM_SHDR_ENTRIES (symtab_hdr) - symtab_hdr->sh_info;
      for (i = 0; i < n; ++i)
        {
         struct alpha_elf_got_entry *ae, *be, **pbe, **start;
         struct alpha_elf_link_hash_entry *h;

         h = hashes[i];
         while (h->root.root.type == bfd_link_hash_indirect
                || h->root.root.type == bfd_link_hash_warning)
           h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;

         pbe = start = &h->got_entries;
         while ((be = *pbe) != NULL)
           {
             if (be->use_count == 0)
               {
                *pbe = be->next;
                memset (be, 0xa5, sizeof (*be));
                goto kill;
               }
             if (be->gotobj != b)
               goto next;

             for (ae = *start; ae ; ae = ae->next)
               if (ae->gotobj == a
                  && ae->reloc_type == be->reloc_type
                  && ae->addend == be->addend)
                {
                  ae->flags |= be->flags;
                  ae->use_count += be->use_count;
                  *pbe = be->next;
                  memset (be, 0xa5, sizeof (*be));
                  goto kill;
                }
             be->gotobj = a;
             total += alpha_got_entry_size (be->reloc_type);

           next:;
             pbe = &be->next;
           kill:;
           }
        }

      alpha_elf_tdata (bsub)->gotobj = a;
    }
  alpha_elf_tdata (a)->total_got_size = total;

  /* Merge the two in_got chains.  */
  {
    bfd *next;

    bsub = a;
    while ((next = alpha_elf_tdata (bsub)->in_got_link_next) != NULL)
      bsub = next;

    alpha_elf_tdata (bsub)->in_got_link_next = b;
  }
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean elf64_alpha_merge_ind_symbols ( struct alpha_elf_link_hash_entry hi,
PTR dummy  ATTRIBUTE_UNUSED 
) [static]

Definition at line 2073 of file elf64-alpha.c.

{
  struct alpha_elf_link_hash_entry *hs;

  if (hi->root.root.type != bfd_link_hash_indirect)
    return TRUE;
  hs = hi;
  do {
    hs = (struct alpha_elf_link_hash_entry *)hs->root.root.u.i.link;
  } while (hs->root.root.type == bfd_link_hash_indirect);

  /* Merge the flags.  Whee.  */

  hs->flags |= hi->flags;

  /* Merge the .got entries.  Cannibalize the old symbol's list in
     doing so, since we don't need it anymore.  */

  if (hs->got_entries == NULL)
    hs->got_entries = hi->got_entries;
  else
    {
      struct alpha_elf_got_entry *gi, *gs, *gin, *gsh;

      gsh = hs->got_entries;
      for (gi = hi->got_entries; gi ; gi = gin)
       {
         gin = gi->next;
         for (gs = gsh; gs ; gs = gs->next)
           if (gi->gotobj == gs->gotobj
              && gi->reloc_type == gs->reloc_type
              && gi->addend == gs->addend)
             {
              gi->use_count += gs->use_count;
               goto got_found;
             }
         gi->next = hs->got_entries;
         hs->got_entries = gi;
       got_found:;
       }
    }
  hi->got_entries = NULL;

  /* And similar for the reloc entries.  */

  if (hs->reloc_entries == NULL)
    hs->reloc_entries = hi->reloc_entries;
  else
    {
      struct alpha_elf_reloc_entry *ri, *rs, *rin, *rsh;

      rsh = hs->reloc_entries;
      for (ri = hi->reloc_entries; ri ; ri = rin)
       {
         rin = ri->next;
         for (rs = rsh; rs ; rs = rs->next)
           if (ri->rtype == rs->rtype && ri->srel == rs->srel)
             {
              rs->count += ri->count;
              goto found_reloc;
             }
         ri->next = hs->reloc_entries;
         hs->reloc_entries = ri;
       found_reloc:;
       }
    }
  hi->reloc_entries = NULL;

  return TRUE;
}

Here is the caller graph for this function:

static void elf64_alpha_merge_symbol_attribute ( struct elf_link_hash_entry h,
const Elf_Internal_Sym *  isym,
bfd_boolean  definition,
bfd_boolean  dynamic 
) [static]

Definition at line 2058 of file elf64-alpha.c.

{
  if (!dynamic && definition)
    h->other = ((h->other & ELF_ST_VISIBILITY (-1))
              | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
}
static bfd_boolean elf64_alpha_mkobject ( bfd abfd) [static]

Definition at line 322 of file elf64-alpha.c.

{
  if (abfd->tdata.any == NULL)
    {
      bfd_size_type amt = sizeof (struct alpha_elf_obj_tdata);
      abfd->tdata.any = bfd_zalloc (abfd, amt);
      if (abfd->tdata.any == NULL)
       return FALSE;
    }
  return bfd_elf_mkobject (abfd);
}

Here is the call graph for this function:

static bfd_boolean elf64_alpha_object_p ( bfd abfd) [static]

Definition at line 335 of file elf64-alpha.c.

{
  /* Set the right machine number for an Alpha ELF file.  */
  return bfd_default_set_arch_mach (abfd, bfd_arch_alpha, 0);
}

Here is the call graph for this function:

Definition at line 1530 of file elf64-alpha.c.

{
  struct extsym_info *einfo = (struct extsym_info *) data;
  bfd_boolean strip;
  asection *sec, *output_section;

  if (h->root.root.type == bfd_link_hash_warning)
    h = (struct alpha_elf_link_hash_entry *) h->root.root.u.i.link;

  if (h->root.indx == -2)
    strip = FALSE;
  else if ((h->root.def_dynamic
           || h->root.ref_dynamic
           || h->root.root.type == bfd_link_hash_new)
          && !h->root.def_regular
          && !h->root.ref_regular)
    strip = TRUE;
  else if (einfo->info->strip == strip_all
          || (einfo->info->strip == strip_some
              && bfd_hash_lookup (einfo->info->keep_hash,
                               h->root.root.root.string,
                               FALSE, FALSE) == NULL))
    strip = TRUE;
  else
    strip = FALSE;

  if (strip)
    return TRUE;

  if (h->esym.ifd == -2)
    {
      h->esym.jmptbl = 0;
      h->esym.cobol_main = 0;
      h->esym.weakext = 0;
      h->esym.reserved = 0;
      h->esym.ifd = ifdNil;
      h->esym.asym.value = 0;
      h->esym.asym.st = stGlobal;

      if (h->root.root.type != bfd_link_hash_defined
         && h->root.root.type != bfd_link_hash_defweak)
       h->esym.asym.sc = scAbs;
      else
       {
         const char *name;

         sec = h->root.root.u.def.section;
         output_section = sec->output_section;

         /* When making a shared library and symbol h is the one from
            the another shared library, OUTPUT_SECTION may be null.  */
         if (output_section == NULL)
           h->esym.asym.sc = scUndefined;
         else
           {
             name = bfd_section_name (output_section->owner, output_section);

             if (strcmp (name, ".text") == 0)
              h->esym.asym.sc = scText;
             else if (strcmp (name, ".data") == 0)
              h->esym.asym.sc = scData;
             else if (strcmp (name, ".sdata") == 0)
              h->esym.asym.sc = scSData;
             else if (strcmp (name, ".rodata") == 0
                     || strcmp (name, ".rdata") == 0)
              h->esym.asym.sc = scRData;
             else if (strcmp (name, ".bss") == 0)
              h->esym.asym.sc = scBss;
             else if (strcmp (name, ".sbss") == 0)
              h->esym.asym.sc = scSBss;
             else if (strcmp (name, ".init") == 0)
              h->esym.asym.sc = scInit;
             else if (strcmp (name, ".fini") == 0)
              h->esym.asym.sc = scFini;
             else
              h->esym.asym.sc = scAbs;
           }
       }

      h->esym.asym.reserved = 0;
      h->esym.asym.index = indexNil;
    }

  if (h->root.root.type == bfd_link_hash_common)
    h->esym.asym.value = h->root.root.u.c.size;
  else if (h->root.root.type == bfd_link_hash_defined
          || h->root.root.type == bfd_link_hash_defweak)
    {
      if (h->esym.asym.sc == scCommon)
       h->esym.asym.sc = scBss;
      else if (h->esym.asym.sc == scSCommon)
       h->esym.asym.sc = scSBss;

      sec = h->root.root.u.def.section;
      output_section = sec->output_section;
      if (output_section != NULL)
       h->esym.asym.value = (h->root.root.u.def.value
                           + sec->output_offset
                           + output_section->vma);
      else
       h->esym.asym.value = 0;
    }

  if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
                                  h->root.root.root.string,
                                  &h->esym))
    {
      einfo->failed = TRUE;
      return FALSE;
    }

  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean elf64_alpha_read_ecoff_info ( bfd abfd,
asection section,
struct ecoff_debug_info debug 
) [static]

Definition at line 1321 of file elf64-alpha.c.

{
  HDRR *symhdr;
  const struct ecoff_debug_swap *swap;
  char *ext_hdr = NULL;

  swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
  memset (debug, 0, sizeof (*debug));

  ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
  if (ext_hdr == NULL && swap->external_hdr_size != 0)
    goto error_return;

  if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
                              swap->external_hdr_size))
    goto error_return;

  symhdr = &debug->symbolic_header;
  (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);

  /* The symbolic header contains absolute file offsets and sizes to
     read.  */
#define READ(ptr, offset, count, size, type)                          \
  if (symhdr->count == 0)                                      \
    debug->ptr = NULL;                                                \
  else                                                         \
    {                                                          \
      bfd_size_type amt = (bfd_size_type) size * symhdr->count;              \
      debug->ptr = (type) bfd_malloc (amt);                           \
      if (debug->ptr == NULL)                                         \
       goto error_return;                                      \
      if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0   \
         || bfd_bread (debug->ptr, amt, abfd) != amt)                 \
       goto error_return;                                      \
    }

  READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
  READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
  READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
  READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
  READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
  READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
       union aux_ext *);
  READ (ss, cbSsOffset, issMax, sizeof (char), char *);
  READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
  READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
  READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
  READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
#undef READ

  debug->fdr = NULL;

  return TRUE;

 error_return:
  if (ext_hdr != NULL)
    free (ext_hdr);
  if (debug->line != NULL)
    free (debug->line);
  if (debug->external_dnr != NULL)
    free (debug->external_dnr);
  if (debug->external_pdr != NULL)
    free (debug->external_pdr);
  if (debug->external_sym != NULL)
    free (debug->external_sym);
  if (debug->external_opt != NULL)
    free (debug->external_opt);
  if (debug->external_aux != NULL)
    free (debug->external_aux);
  if (debug->ss != NULL)
    free (debug->ss);
  if (debug->ssext != NULL)
    free (debug->ssext);
  if (debug->external_fdr != NULL)
    free (debug->external_fdr);
  if (debug->external_rfd != NULL)
    free (debug->external_rfd);
  if (debug->external_ext != NULL)
    free (debug->external_ext);
  return FALSE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean elf64_alpha_relax_got_load ( struct alpha_relax_info info,
bfd_vma  symval,
Elf_Internal_Rela irel,
unsigned long  r_type 
) [static]

Definition at line 2927 of file elf64-alpha.c.

{
  unsigned int insn;
  bfd_signed_vma disp;

  /* Get the instruction.  */
  insn = bfd_get_32 (info->abfd, info->contents + irel->r_offset);

  if (insn >> 26 != OP_LDQ)
    {
      reloc_howto_type *howto = elf64_alpha_howto_table + r_type;
      ((*_bfd_error_handler)
       ("%B: %A+0x%lx: warning: %s relocation against unexpected insn",
       info->abfd, info->sec,
       (unsigned long) irel->r_offset, howto->name));
      return TRUE;
    }

  /* Can't relax dynamic symbols.  */
  if (alpha_elf_dynamic_symbol_p (&info->h->root, info->link_info))
    return TRUE;

  /* Can't use local-exec relocations in shared libraries.  */
  if (r_type == R_ALPHA_GOTTPREL && info->link_info->shared)
    return TRUE;

  if (r_type == R_ALPHA_LITERAL)
    {
      /* Look for nice constant addresses.  This includes the not-uncommon
        special case of 0 for undefweak symbols.  */
      if ((info->h && info->h->root.root.type == bfd_link_hash_undefweak)
         || (!info->link_info->shared
             && (symval >= (bfd_vma)-0x8000 || symval < 0x8000)))
       {
         disp = 0;
         insn = (OP_LDA << 26) | (insn & (31 << 21)) | (31 << 16);
         insn |= (symval & 0xffff);
         r_type = R_ALPHA_NONE;
       }
      else
       {
         disp = symval - info->gp;
         insn = (OP_LDA << 26) | (insn & 0x03ff0000);
         r_type = R_ALPHA_GPREL16;
       }
    }
  else
    {
      bfd_vma dtp_base, tp_base;

      BFD_ASSERT (elf_hash_table (info->link_info)->tls_sec != NULL);
      dtp_base = alpha_get_dtprel_base (info->link_info);
      tp_base = alpha_get_tprel_base (info->link_info);
      disp = symval - (r_type == R_ALPHA_GOTDTPREL ? dtp_base : tp_base);

      insn = (OP_LDA << 26) | (insn & (31 << 21)) | (31 << 16);

      switch (r_type)
       {
       case R_ALPHA_GOTDTPREL:
         r_type = R_ALPHA_DTPREL16;
         break;
       case R_ALPHA_GOTTPREL:
         r_type = R_ALPHA_TPREL16;
         break;
       default:
         BFD_ASSERT (0);
         return FALSE;
       }
    }

  if (disp < -0x8000 || disp >= 0x8000)
    return TRUE;

  bfd_put_32 (info->abfd, (bfd_vma) insn, info->contents + irel->r_offset);
  info->changed_contents = TRUE;

  /* Reduce the use count on this got entry by one, possibly
     eliminating it.  */
  if (--info->gotent->use_count == 0)
    {
      int sz = alpha_got_entry_size (r_type);
      alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
      if (!info->h)
       alpha_elf_tdata (info->gotobj)->local_got_size -= sz;
    }

  /* Smash the existing GOT relocation for its 16-bit immediate pair.  */
  irel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info), r_type);
  info->changed_relocs = TRUE;

  /* ??? Search forward through this basic block looking for insns
     that use the target register.  Stop after an insn modifying the
     register is seen, or after a branch or call.

     Any such memory load insn may be substituted by a load directly
     off the GP.  This allows the memory load insn to be issued before
     the calculated GP register would otherwise be ready.

     Any such jsr insn can be replaced by a bsr if it is in range.

     This would mean that we'd have to _add_ relocations, the pain of
     which gives one pause.  */

  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_vma elf64_alpha_relax_opt_call ( struct alpha_relax_info info,
bfd_vma  symval 
) [static]

Definition at line 3036 of file elf64-alpha.c.

{
  /* If the function has the same gp, and we can identify that the
     function does not use its function pointer, we can eliminate the
     address load.  */

  /* If the symbol is marked NOPV, we are being told the function never
     needs its procedure value.  */
  if ((info->other & STO_ALPHA_STD_GPLOAD) == STO_ALPHA_NOPV)
    return symval;

  /* If the symbol is marked STD_GP, we are being told the function does
     a normal ldgp in the first two words.  */
  else if ((info->other & STO_ALPHA_STD_GPLOAD) == STO_ALPHA_STD_GPLOAD)
    ;

  /* Otherwise, we may be able to identify a GP load in the first two
     words, which we can then skip.  */
  else
    {
      Elf_Internal_Rela *tsec_relocs, *tsec_relend, *tsec_free, *gpdisp;
      bfd_vma ofs;

      /* Load the relocations from the section that the target symbol is in.  */
      if (info->sec == info->tsec)
       {
         tsec_relocs = info->relocs;
         tsec_relend = info->relend;
         tsec_free = NULL;
       }
      else
       {
         tsec_relocs = (_bfd_elf_link_read_relocs
                       (info->abfd, info->tsec, (PTR) NULL,
                      (Elf_Internal_Rela *) NULL,
                      info->link_info->keep_memory));
         if (tsec_relocs == NULL)
           return 0;
         tsec_relend = tsec_relocs + info->tsec->reloc_count;
         tsec_free = (info->link_info->keep_memory ? NULL : tsec_relocs);
       }

      /* Recover the symbol's offset within the section.  */
      ofs = (symval - info->tsec->output_section->vma
            - info->tsec->output_offset);

      /* Look for a GPDISP reloc.  */
      gpdisp = (elf64_alpha_find_reloc_at_ofs
              (tsec_relocs, tsec_relend, ofs, R_ALPHA_GPDISP));

      if (!gpdisp || gpdisp->r_addend != 4)
       {
         if (tsec_free)
           free (tsec_free);
         return 0;
       }
      if (tsec_free)
        free (tsec_free);
    }

  /* We've now determined that we can skip an initial gp load.  Verify
     that the call and the target use the same gp.   */
  if (info->link_info->hash->creator != info->tsec->owner->xvec
      || info->gotobj != alpha_elf_tdata (info->tsec->owner)->gotobj)
    return 0;

  return symval + 8;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean elf64_alpha_relax_section ( bfd abfd,
asection sec,
struct bfd_link_info link_info,
bfd_boolean again 
) [static]

Definition at line 3602 of file elf64-alpha.c.

{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Rela *internal_relocs;
  Elf_Internal_Rela *irel, *irelend;
  Elf_Internal_Sym *isymbuf = NULL;
  struct alpha_elf_got_entry **local_got_entries;
  struct alpha_relax_info info;

  /* We are not currently changing any sizes, so only one pass.  */
  *again = FALSE;

  if (link_info->relocatable
      || ((sec->flags & (SEC_CODE | SEC_RELOC | SEC_ALLOC))
         != (SEC_CODE | SEC_RELOC | SEC_ALLOC))
      || sec->reloc_count == 0)
    return TRUE;

  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  local_got_entries = alpha_elf_tdata(abfd)->local_got_entries;

  /* Load the relocations for this section.  */
  internal_relocs = (_bfd_elf_link_read_relocs
                   (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
                    link_info->keep_memory));
  if (internal_relocs == NULL)
    return FALSE;

  memset(&info, 0, sizeof (info));
  info.abfd = abfd;
  info.sec = sec;
  info.link_info = link_info;
  info.symtab_hdr = symtab_hdr;
  info.relocs = internal_relocs;
  info.relend = irelend = internal_relocs + sec->reloc_count;

  /* Find the GP for this object.  Do not store the result back via
     _bfd_set_gp_value, since this could change again before final.  */
  info.gotobj = alpha_elf_tdata (abfd)->gotobj;
  if (info.gotobj)
    {
      asection *sgot = alpha_elf_tdata (info.gotobj)->got;
      info.gp = (sgot->output_section->vma
               + sgot->output_offset
               + 0x8000);
    }

  /* Get the section contents.  */
  if (elf_section_data (sec)->this_hdr.contents != NULL)
    info.contents = elf_section_data (sec)->this_hdr.contents;
  else
    {
      if (!bfd_malloc_and_get_section (abfd, sec, &info.contents))
       goto error_return;
    }

  for (irel = internal_relocs; irel < irelend; irel++)
    {
      bfd_vma symval;
      struct alpha_elf_got_entry *gotent;
      unsigned long r_type = ELF64_R_TYPE (irel->r_info);
      unsigned long r_symndx = ELF64_R_SYM (irel->r_info);

      /* Early exit for unhandled or unrelaxable relocations.  */
      switch (r_type)
       {
       case R_ALPHA_LITERAL:
       case R_ALPHA_GPRELHIGH:
       case R_ALPHA_GPRELLOW:
       case R_ALPHA_GOTDTPREL:
       case R_ALPHA_GOTTPREL:
       case R_ALPHA_TLSGD:
         break;

       case R_ALPHA_TLSLDM:
         /* The symbol for a TLSLDM reloc is ignored.  Collapse the
             reloc to the 0 symbol so that they all match.  */
         r_symndx = 0;
         break;

       default:
         continue;
       }

      /* Get the value of the symbol referred to by the reloc.  */
      if (r_symndx < symtab_hdr->sh_info)
       {
         /* A local symbol.  */
         Elf_Internal_Sym *isym;

         /* Read this BFD's local symbols.  */
         if (isymbuf == NULL)
           {
             isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
             if (isymbuf == NULL)
              isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
                                          symtab_hdr->sh_info, 0,
                                          NULL, NULL, NULL);
             if (isymbuf == NULL)
              goto error_return;
           }

         isym = isymbuf + r_symndx;

         /* Given the symbol for a TLSLDM reloc is ignored, this also
            means forcing the symbol value to the tp base.  */
         if (r_type == R_ALPHA_TLSLDM)
           {
             info.tsec = bfd_abs_section_ptr;
             symval = alpha_get_tprel_base (info.link_info);
           }
         else
           {
             symval = isym->st_value;
             if (isym->st_shndx == SHN_UNDEF)
               continue;
             else if (isym->st_shndx == SHN_ABS)
               info.tsec = bfd_abs_section_ptr;
             else if (isym->st_shndx == SHN_COMMON)
               info.tsec = bfd_com_section_ptr;
             else
               info.tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
           }

         info.h = NULL;
         info.other = isym->st_other;
         if (local_got_entries)
           info.first_gotent = &local_got_entries[r_symndx];
         else
           {
             info.first_gotent = &info.gotent;
             info.gotent = NULL;
           }
       }
      else
       {
         unsigned long indx;
         struct alpha_elf_link_hash_entry *h;

         indx = r_symndx - symtab_hdr->sh_info;
         h = alpha_elf_sym_hashes (abfd)[indx];
         BFD_ASSERT (h != NULL);

         while (h->root.root.type == bfd_link_hash_indirect
               || h->root.root.type == bfd_link_hash_warning)
           h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;

         /* If the symbol is undefined, we can't do anything with it.  */
         if (h->root.root.type == bfd_link_hash_undefined)
           continue;

         /* If the symbol isn't defined in the current module,
            again we can't do anything.  */
         if (h->root.root.type == bfd_link_hash_undefweak)
           {
             info.tsec = bfd_abs_section_ptr;
             symval = 0;
           }
         else if (!h->root.def_regular)
           {
             /* Except for TLSGD relocs, which can sometimes be
               relaxed to GOTTPREL relocs.  */
             if (r_type != R_ALPHA_TLSGD)
              continue;
             info.tsec = bfd_abs_section_ptr;
             symval = 0;
           }
         else
           {
             info.tsec = h->root.root.u.def.section;
             symval = h->root.root.u.def.value;
           }

         info.h = h;
         info.other = h->root.other;
         info.first_gotent = &h->got_entries;
       }

      /* Search for the got entry to be used by this relocation.  */
      for (gotent = *info.first_gotent; gotent ; gotent = gotent->next)
       if (gotent->gotobj == info.gotobj
           && gotent->reloc_type == r_type
           && gotent->addend == irel->r_addend)
         break;
      info.gotent = gotent;

      symval += info.tsec->output_section->vma + info.tsec->output_offset;
      symval += irel->r_addend;

      switch (r_type)
       {
       case R_ALPHA_LITERAL:
         BFD_ASSERT(info.gotent != NULL);

         /* If there exist LITUSE relocations immediately following, this
            opens up all sorts of interesting optimizations, because we
            now know every location that this address load is used.  */
         if (irel+1 < irelend
             && ELF64_R_TYPE (irel[1].r_info) == R_ALPHA_LITUSE)
           {
             if (!elf64_alpha_relax_with_lituse (&info, symval, irel))
              goto error_return;
           }
         else
           {
             if (!elf64_alpha_relax_got_load (&info, symval, irel, r_type))
              goto error_return;
           }
         break;

       case R_ALPHA_GOTDTPREL:
       case R_ALPHA_GOTTPREL:
         BFD_ASSERT(info.gotent != NULL);
         if (!elf64_alpha_relax_got_load (&info, symval, irel, r_type))
           goto error_return;
         break;

       case R_ALPHA_TLSGD:
       case R_ALPHA_TLSLDM:
         BFD_ASSERT(info.gotent != NULL);
         if (!elf64_alpha_relax_tls_get_addr (&info, symval, irel,
                                          r_type == R_ALPHA_TLSGD))
           goto error_return;
         break;
       }
    }

  if (!elf64_alpha_size_plt_section (link_info))
    return FALSE;
  if (!elf64_alpha_size_got_sections (link_info))
    return FALSE;
  if (!elf64_alpha_size_rela_got_section (link_info))
    return FALSE;

  if (isymbuf != NULL
      && symtab_hdr->contents != (unsigned char *) isymbuf)
    {
      if (!link_info->keep_memory)
       free (isymbuf);
      else
       {
         /* Cache the symbols for elf_link_input_bfd.  */
         symtab_hdr->contents = (unsigned char *) isymbuf;
       }
    }

  if (info.contents != NULL
      && elf_section_data (sec)->this_hdr.contents != info.contents)
    {
      if (!info.changed_contents && !link_info->keep_memory)
       free (info.contents);
      else
       {
         /* Cache the section contents for elf_link_input_bfd.  */
         elf_section_data (sec)->this_hdr.contents = info.contents;
       }
    }

  if (elf_section_data (sec)->relocs != internal_relocs)
    {
      if (!info.changed_relocs)
       free (internal_relocs);
      else
       elf_section_data (sec)->relocs = internal_relocs;
    }

  *again = info.changed_contents || info.changed_relocs;

  return TRUE;

 error_return:
  if (isymbuf != NULL
      && symtab_hdr->contents != (unsigned char *) isymbuf)
    free (isymbuf);
  if (info.contents != NULL
      && elf_section_data (sec)->this_hdr.contents != info.contents)
    free (info.contents);
  if (internal_relocs != NULL
      && elf_section_data (sec)->relocs != internal_relocs)
    free (internal_relocs);
  return FALSE;
}

Here is the call graph for this function:

static bfd_boolean elf64_alpha_relax_tls_get_addr ( struct alpha_relax_info info,
bfd_vma  symval,
Elf_Internal_Rela irel,
bfd_boolean  is_gd 
) [static]

Definition at line 3361 of file elf64-alpha.c.

{
  bfd_byte *pos[5];
  unsigned int insn;
  Elf_Internal_Rela *gpdisp, *hint;
  bfd_boolean dynamic, use_gottprel, pos1_unusable;
  unsigned long new_symndx;

  dynamic = alpha_elf_dynamic_symbol_p (&info->h->root, info->link_info);

  /* If a TLS symbol is accessed using IE at least once, there is no point
     to use dynamic model for it.  */
  if (is_gd && info->h && (info->h->flags & ALPHA_ELF_LINK_HASH_TLS_IE))
    ;

  /* If the symbol is local, and we've already committed to DF_STATIC_TLS,
     then we might as well relax to IE.  */
  else if (info->link_info->shared && !dynamic
          && (info->link_info->flags & DF_STATIC_TLS))
    ;

  /* Otherwise we must be building an executable to do anything.  */
  else if (info->link_info->shared)
    return TRUE;

  /* The TLSGD/TLSLDM relocation must be followed by a LITERAL and
     the matching LITUSE_TLS relocations.  */
  if (irel + 2 >= info->relend)
    return TRUE;
  if (ELF64_R_TYPE (irel[1].r_info) != R_ALPHA_LITERAL
      || ELF64_R_TYPE (irel[2].r_info) != R_ALPHA_LITUSE
      || irel[2].r_addend != (is_gd ? LITUSE_ALPHA_TLSGD : LITUSE_ALPHA_TLSLDM))
    return TRUE;

  /* There must be a GPDISP relocation positioned immediately after the
     LITUSE relocation.  */
  gpdisp = elf64_alpha_find_reloc_at_ofs (info->relocs, info->relend,
                                     irel[2].r_offset + 4, R_ALPHA_GPDISP);
  if (!gpdisp)
    return TRUE;

  pos[0] = info->contents + irel[0].r_offset;
  pos[1] = info->contents + irel[1].r_offset;
  pos[2] = info->contents + irel[2].r_offset;
  pos[3] = info->contents + gpdisp->r_offset;
  pos[4] = pos[3] + gpdisp->r_addend;
  pos1_unusable = FALSE;

  /* Generally, the positions are not allowed to be out of order, lest the
     modified insn sequence have different register lifetimes.  We can make
     an exception when pos 1 is adjacent to pos 0.  */
  if (pos[1] + 4 == pos[0])
    {
      bfd_byte *tmp = pos[0];
      pos[0] = pos[1];
      pos[1] = tmp;
    }
  else if (pos[1] < pos[0])
    pos1_unusable = TRUE;
  if (pos[1] >= pos[2] || pos[2] >= pos[3])
    return TRUE;

  /* Reduce the use count on the LITERAL relocation.  Do this before we
     smash the symndx when we adjust the relocations below.  */
  {
    struct alpha_elf_got_entry *lit_gotent;
    struct alpha_elf_link_hash_entry *lit_h;
    unsigned long indx;

    BFD_ASSERT (ELF64_R_SYM (irel[1].r_info) >= info->symtab_hdr->sh_info);
    indx = ELF64_R_SYM (irel[1].r_info) - info->symtab_hdr->sh_info;
    lit_h = alpha_elf_sym_hashes (info->abfd)[indx];

    while (lit_h->root.root.type == bfd_link_hash_indirect
          || lit_h->root.root.type == bfd_link_hash_warning)
      lit_h = (struct alpha_elf_link_hash_entry *) lit_h->root.root.u.i.link;

    for (lit_gotent = lit_h->got_entries; lit_gotent ;
        lit_gotent = lit_gotent->next)
      if (lit_gotent->gotobj == info->gotobj
         && lit_gotent->reloc_type == R_ALPHA_LITERAL
         && lit_gotent->addend == irel[1].r_addend)
       break;
    BFD_ASSERT (lit_gotent);

    if (--lit_gotent->use_count == 0)
      {
       int sz = alpha_got_entry_size (R_ALPHA_LITERAL);
       alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
      }
  }

  /* Change

       lda    $16,x($gp)                  !tlsgd!1
       ldq    $27,__tls_get_addr($gp)            !literal!1
       jsr    $26,($27),__tls_get_addr    !lituse_tlsgd!1
       ldah   $29,0($26)                  !gpdisp!2
       lda    $29,0($29)                  !gpdisp!2
     to
       ldq    $16,x($gp)                  !gottprel
       unop
       call_pal rduniq
       addq   $16,$0,$0
       unop
     or the first pair to
       lda    $16,x($gp)                  !tprel
       unop
     or
       ldah   $16,x($gp)                  !tprelhi
       lda    $16,x($16)                  !tprello

     as appropriate.  */

  use_gottprel = FALSE;
  new_symndx = is_gd ? ELF64_R_SYM (irel->r_info) : 0;
  switch (!dynamic && !info->link_info->shared)
    {
    case 1:
      {
       bfd_vma tp_base;
       bfd_signed_vma disp;

       BFD_ASSERT (elf_hash_table (info->link_info)->tls_sec != NULL);
       tp_base = alpha_get_tprel_base (info->link_info);
       disp = symval - tp_base;

       if (disp >= -0x8000 && disp < 0x8000)
         {
           insn = (OP_LDA << 26) | (16 << 21) | (31 << 16);
           bfd_put_32 (info->abfd, (bfd_vma) insn, pos[0]);
           bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, pos[1]);

           irel[0].r_offset = pos[0] - info->contents;
           irel[0].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_TPREL16);
           irel[1].r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
           break;
         }
       else if (disp >= -(bfd_signed_vma) 0x80000000
               && disp < (bfd_signed_vma) 0x7fff8000
               && !pos1_unusable)
         {
           insn = (OP_LDAH << 26) | (16 << 21) | (31 << 16);
           bfd_put_32 (info->abfd, (bfd_vma) insn, pos[0]);
           insn = (OP_LDA << 26) | (16 << 21) | (16 << 16);
           bfd_put_32 (info->abfd, (bfd_vma) insn, pos[1]);

           irel[0].r_offset = pos[0] - info->contents;
           irel[0].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_TPRELHI);
           irel[1].r_offset = pos[1] - info->contents;
           irel[1].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_TPRELLO);
           break;
         }
      }
      /* FALLTHRU */

    default:
      use_gottprel = TRUE;

      insn = (OP_LDQ << 26) | (16 << 21) | (29 << 16);
      bfd_put_32 (info->abfd, (bfd_vma) insn, pos[0]);
      bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, pos[1]);

      irel[0].r_offset = pos[0] - info->contents;
      irel[0].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_GOTTPREL);
      irel[1].r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
      break;
    }

  bfd_put_32 (info->abfd, (bfd_vma) INSN_RDUNIQ, pos[2]);

  insn = INSN_ADDQ | (16 << 21) | (0 << 16) | (0 << 0);
  bfd_put_32 (info->abfd, (bfd_vma) insn, pos[3]);

  bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, pos[4]);

  irel[2].r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
  gpdisp->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);

  hint = elf64_alpha_find_reloc_at_ofs (info->relocs, info->relend,
                                   irel[2].r_offset, R_ALPHA_HINT);
  if (hint)
    hint->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);

  info->changed_contents = TRUE;
  info->changed_relocs = TRUE;

  /* Reduce the use count on the TLSGD/TLSLDM relocation.  */
  if (--info->gotent->use_count == 0)
    {
      int sz = alpha_got_entry_size (info->gotent->reloc_type);
      alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
      if (!info->h)
       alpha_elf_tdata (info->gotobj)->local_got_size -= sz;
    }

  /* If we've switched to a GOTTPREL relocation, increment the reference
     count on that got entry.  */
  if (use_gottprel)
    {
      struct alpha_elf_got_entry *tprel_gotent;

      for (tprel_gotent = *info->first_gotent; tprel_gotent ;
          tprel_gotent = tprel_gotent->next)
       if (tprel_gotent->gotobj == info->gotobj
           && tprel_gotent->reloc_type == R_ALPHA_GOTTPREL
           && tprel_gotent->addend == irel->r_addend)
         break;
      if (tprel_gotent)
       tprel_gotent->use_count++;
      else
       {
         if (info->gotent->use_count == 0)
           tprel_gotent = info->gotent;
         else
           {
             tprel_gotent = (struct alpha_elf_got_entry *)
              bfd_alloc (info->abfd, sizeof (struct alpha_elf_got_entry));
             if (!tprel_gotent)
              return FALSE;

             tprel_gotent->next = *info->first_gotent;
             *info->first_gotent = tprel_gotent;

             tprel_gotent->gotobj = info->gotobj;
             tprel_gotent->addend = irel->r_addend;
             tprel_gotent->got_offset = -1;
             tprel_gotent->reloc_done = 0;
             tprel_gotent->reloc_xlated = 0;
           }

         tprel_gotent->use_count = 1;
         tprel_gotent->reloc_type = R_ALPHA_GOTTPREL;
       }
    }

  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean elf64_alpha_relax_with_lituse ( struct alpha_relax_info info,
bfd_vma  symval,
Elf_Internal_Rela irel 
) [static]

Definition at line 3106 of file elf64-alpha.c.

{
  Elf_Internal_Rela *urel, *irelend = info->relend;
  int flags, count, i;
  bfd_signed_vma disp;
  bfd_boolean fits16;
  bfd_boolean fits32;
  bfd_boolean lit_reused = FALSE;
  bfd_boolean all_optimized = TRUE;
  unsigned int lit_insn;

  lit_insn = bfd_get_32 (info->abfd, info->contents + irel->r_offset);
  if (lit_insn >> 26 != OP_LDQ)
    {
      ((*_bfd_error_handler)
       ("%B: %A+0x%lx: warning: LITERAL relocation against unexpected insn",
       info->abfd, info->sec,
       (unsigned long) irel->r_offset));
      return TRUE;
    }

  /* Can't relax dynamic symbols.  */
  if (alpha_elf_dynamic_symbol_p (&info->h->root, info->link_info))
    return TRUE;

  /* Summarize how this particular LITERAL is used.  */
  for (urel = irel+1, flags = count = 0; urel < irelend; ++urel, ++count)
    {
      if (ELF64_R_TYPE (urel->r_info) != R_ALPHA_LITUSE)
       break;
      if (urel->r_addend <= 6)
       flags |= 1 << urel->r_addend;
    }

  /* A little preparation for the loop...  */
  disp = symval - info->gp;

  for (urel = irel+1, i = 0; i < count; ++i, ++urel)
    {
      unsigned int insn;
      int insn_disp;
      bfd_signed_vma xdisp;

      insn = bfd_get_32 (info->abfd, info->contents + urel->r_offset);

      switch (urel->r_addend)
       {
       case LITUSE_ALPHA_ADDR:
       default:
         /* This type is really just a placeholder to note that all
            uses cannot be optimized, but to still allow some.  */
         all_optimized = FALSE;
         break;

       case LITUSE_ALPHA_BASE:
         /* We can always optimize 16-bit displacements.  */

         /* Extract the displacement from the instruction, sign-extending
            it if necessary, then test whether it is within 16 or 32 bits
            displacement from GP.  */
         insn_disp = ((insn & 0xffff) ^ 0x8000) - 0x8000;

         xdisp = disp + insn_disp;
         fits16 = (xdisp >= - (bfd_signed_vma) 0x8000 && xdisp < 0x8000);
         fits32 = (xdisp >= - (bfd_signed_vma) 0x80000000
                  && xdisp < 0x7fff8000);

         if (fits16)
           {
             /* Take the op code and dest from this insn, take the base
               register from the literal insn.  Leave the offset alone.  */
             insn = (insn & 0xffe0ffff) | (lit_insn & 0x001f0000);
             urel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
                                      R_ALPHA_GPREL16);
             urel->r_addend = irel->r_addend;
             info->changed_relocs = TRUE;

             bfd_put_32 (info->abfd, (bfd_vma) insn,
                       info->contents + urel->r_offset);
             info->changed_contents = TRUE;
           }

         /* If all mem+byte, we can optimize 32-bit mem displacements.  */
         else if (fits32 && !(flags & ~6))
           {
             /* FIXME: sanity check that lit insn Ra is mem insn Rb.  */

             irel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
                                      R_ALPHA_GPRELHIGH);
             lit_insn = (OP_LDAH << 26) | (lit_insn & 0x03ff0000);
             bfd_put_32 (info->abfd, (bfd_vma) lit_insn,
                       info->contents + irel->r_offset);
             lit_reused = TRUE;
             info->changed_contents = TRUE;

             urel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
                                      R_ALPHA_GPRELLOW);
             urel->r_addend = irel->r_addend;
             info->changed_relocs = TRUE;
           }
         else
           all_optimized = FALSE;
         break;

       case LITUSE_ALPHA_BYTOFF:
         /* We can always optimize byte instructions.  */

         /* FIXME: sanity check the insn for byte op.  Check that the
            literal dest reg is indeed Rb in the byte insn.  */

         insn &= ~ (unsigned) 0x001ff000;
         insn |= ((symval & 7) << 13) | 0x1000;

         urel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
         urel->r_addend = 0;
         info->changed_relocs = TRUE;

         bfd_put_32 (info->abfd, (bfd_vma) insn,
                    info->contents + urel->r_offset);
         info->changed_contents = TRUE;
         break;

       case LITUSE_ALPHA_JSR:
       case LITUSE_ALPHA_TLSGD:
       case LITUSE_ALPHA_TLSLDM:
       case LITUSE_ALPHA_JSRDIRECT:
         {
           bfd_vma optdest, org;
           bfd_signed_vma odisp;

           /* For undefined weak symbols, we're mostly interested in getting
              rid of the got entry whenever possible, so optimize this to a
              use of the zero register.  */
           if (info->h && info->h->root.root.type == bfd_link_hash_undefweak)
             {
              insn |= 31 << 16;
              bfd_put_32 (info->abfd, (bfd_vma) insn,
                         info->contents + urel->r_offset);

              info->changed_contents = TRUE;
              break;
             }

           /* If not zero, place to jump without needing pv.  */
           optdest = elf64_alpha_relax_opt_call (info, symval);
           org = (info->sec->output_section->vma
                 + info->sec->output_offset
                 + urel->r_offset + 4);
           odisp = (optdest ? optdest : symval) - org;

           if (odisp >= -0x400000 && odisp < 0x400000)
             {
              Elf_Internal_Rela *xrel;

              /* Preserve branch prediction call stack when possible.  */
              if ((insn & INSN_JSR_MASK) == INSN_JSR)
                insn = (OP_BSR << 26) | (insn & 0x03e00000);
              else
                insn = (OP_BR << 26) | (insn & 0x03e00000);

              urel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
                                        R_ALPHA_BRADDR);
              urel->r_addend = irel->r_addend;

              if (optdest)
                urel->r_addend += optdest - symval;
              else
                all_optimized = FALSE;

              bfd_put_32 (info->abfd, (bfd_vma) insn,
                         info->contents + urel->r_offset);

              /* Kill any HINT reloc that might exist for this insn.  */
              xrel = (elf64_alpha_find_reloc_at_ofs
                     (info->relocs, info->relend, urel->r_offset,
                      R_ALPHA_HINT));
              if (xrel)
                xrel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);

              info->changed_contents = TRUE;
              info->changed_relocs = TRUE;
             }
           else
             all_optimized = FALSE;

           /* Even if the target is not in range for a direct branch,
              if we share a GP, we can eliminate the gp reload.  */
           if (optdest)
             {
              Elf_Internal_Rela *gpdisp
                = (elf64_alpha_find_reloc_at_ofs
                   (info->relocs, irelend, urel->r_offset + 4,
                    R_ALPHA_GPDISP));
              if (gpdisp)
                {
                  bfd_byte *p_ldah = info->contents + gpdisp->r_offset;
                  bfd_byte *p_lda = p_ldah + gpdisp->r_addend;
                  unsigned int ldah = bfd_get_32 (info->abfd, p_ldah);
                  unsigned int lda = bfd_get_32 (info->abfd, p_lda);

                  /* Verify that the instruction is "ldah $29,0($26)".
                     Consider a function that ends in a noreturn call,
                     and that the next function begins with an ldgp,
                     and that by accident there is no padding between.
                     In that case the insn would use $27 as the base.  */
                  if (ldah == 0x27ba0000 && lda == 0x23bd0000)
                    {
                     bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, p_ldah);
                     bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, p_lda);

                     gpdisp->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
                     info->changed_contents = TRUE;
                     info->changed_relocs = TRUE;
                    }
                }
             }
         }
         break;
       }
    }

  /* If all cases were optimized, we can reduce the use count on this
     got entry by one, possibly eliminating it.  */
  if (all_optimized)
    {
      if (--info->gotent->use_count == 0)
       {
         int sz = alpha_got_entry_size (R_ALPHA_LITERAL);
         alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
         if (!info->h)
           alpha_elf_tdata (info->gotobj)->local_got_size -= sz;
       }

      /* If the literal instruction is no longer needed (it may have been
        reused.  We can eliminate it.  */
      /* ??? For now, I don't want to deal with compacting the section,
        so just nop it out.  */
      if (!lit_reused)
       {
         irel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
         info->changed_relocs = TRUE;

         bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP,
                    info->contents + irel->r_offset);
         info->changed_contents = TRUE;
       }

      return TRUE;
    }
  else
    return elf64_alpha_relax_got_load (info, symval, irel, R_ALPHA_LITERAL);
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_reloc_status_type elf64_alpha_reloc_bad ( bfd *abfd  ATTRIBUTE_UNUSED,
arelent reloc,
asymbol *sym  ATTRIBUTE_UNUSED,
PTR data  ATTRIBUTE_UNUSED,
asection sec,
bfd output_bfd,
char **error_message  ATTRIBUTE_UNUSED 
) [static]

Definition at line 357 of file elf64-alpha.c.

{
  if (output_bfd)
    reloc->address += sec->output_offset;
  return bfd_reloc_notsupported;
}
static bfd_reloc_status_type elf64_alpha_reloc_gpdisp ( bfd abfd,
arelent reloc_entry,
asymbol *sym  ATTRIBUTE_UNUSED,
PTR  data,
asection input_section,
bfd output_bfd,
char **  err_msg 
) [static]

Definition at line 410 of file elf64-alpha.c.

{
  bfd_reloc_status_type ret;
  bfd_vma gp, relocation;
  bfd_vma high_address;
  bfd_byte *p_ldah, *p_lda;

  /* Don't do anything if we're not doing a final link.  */
  if (output_bfd)
    {
      reloc_entry->address += input_section->output_offset;
      return bfd_reloc_ok;
    }

  high_address = bfd_get_section_limit (abfd, input_section);
  if (reloc_entry->address > high_address
      || reloc_entry->address + reloc_entry->addend > high_address)
    return bfd_reloc_outofrange;

  /* The gp used in the portion of the output object to which this
     input object belongs is cached on the input bfd.  */
  gp = _bfd_get_gp_value (abfd);

  relocation = (input_section->output_section->vma
              + input_section->output_offset
              + reloc_entry->address);

  p_ldah = (bfd_byte *) data + reloc_entry->address;
  p_lda = p_ldah + reloc_entry->addend;

  ret = elf64_alpha_do_reloc_gpdisp (abfd, gp - relocation, p_ldah, p_lda);

  /* Complain if the instructions are not correct.  */
  if (ret == bfd_reloc_dangerous)
    *err_msg = _("GPDISP relocation did not find ldah and lda instructions");

  return ret;
}

Here is the call graph for this function:

static bfd_reloc_status_type elf64_alpha_reloc_nil ( bfd *abfd  ATTRIBUTE_UNUSED,
arelent reloc,
asymbol *sym  ATTRIBUTE_UNUSED,
PTR data  ATTRIBUTE_UNUSED,
asection sec,
bfd output_bfd,
char **error_message  ATTRIBUTE_UNUSED 
) [static]

Definition at line 344 of file elf64-alpha.c.

{
  if (output_bfd)
    reloc->address += sec->output_offset;
  return bfd_reloc_ok;
}

Definition at line 5192 of file elf64-alpha.c.

{
  switch ((int) ELF64_R_TYPE (rela->r_info))
    {
    case R_ALPHA_RELATIVE:
      return reloc_class_relative;
    case R_ALPHA_JMP_SLOT:
      return reloc_class_plt;
    case R_ALPHA_COPY:
      return reloc_class_copy;
    default:
      return reloc_class_normal;
    }
}
static bfd_boolean elf64_alpha_relocate_section ( bfd output_bfd,
struct bfd_link_info info,
bfd input_bfd,
asection input_section,
bfd_byte contents,
Elf_Internal_Rela relocs,
Elf_Internal_Sym *  local_syms,
asection **  local_sections 
) [static]

Definition at line 4008 of file elf64-alpha.c.

{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Rela *rel;
  Elf_Internal_Rela *relend;
  asection *sgot, *srel, *srelgot;
  bfd *dynobj, *gotobj;
  bfd_vma gp, tp_base, dtp_base;
  struct alpha_elf_got_entry **local_got_entries;
  bfd_boolean ret_val;

  /* Handle relocatable links with a smaller loop.  */
  if (info->relocatable)
    return elf64_alpha_relocate_section_r (output_bfd, info, input_bfd,
                                      input_section, contents, relocs,
                                      local_syms, local_sections);

  /* This is a final link.  */

  ret_val = TRUE;

  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;

  dynobj = elf_hash_table (info)->dynobj;
  if (dynobj)
    srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
  else
    srelgot = NULL;

  if (input_section->flags & SEC_ALLOC)
    {
      const char *section_name;
      section_name = (bfd_elf_string_from_elf_section
                    (input_bfd, elf_elfheader(input_bfd)->e_shstrndx,
                     elf_section_data(input_section)->rel_hdr.sh_name));
      BFD_ASSERT(section_name != NULL);
      srel = bfd_get_section_by_name (dynobj, section_name);
    }
  else
    srel = NULL;

  /* Find the gp value for this input bfd.  */
  gotobj = alpha_elf_tdata (input_bfd)->gotobj;
  if (gotobj)
    {
      sgot = alpha_elf_tdata (gotobj)->got;
      gp = _bfd_get_gp_value (gotobj);
      if (gp == 0)
       {
         gp = (sgot->output_section->vma
              + sgot->output_offset
              + 0x8000);
         _bfd_set_gp_value (gotobj, gp);
       }
    }
  else
    {
      sgot = NULL;
      gp = 0;
    }

  local_got_entries = alpha_elf_tdata(input_bfd)->local_got_entries;

  if (elf_hash_table (info)->tls_sec != NULL)
    {
      dtp_base = alpha_get_dtprel_base (info);
      tp_base = alpha_get_tprel_base (info);
    }
  else
    dtp_base = tp_base = 0;

  relend = relocs + input_section->reloc_count;
  for (rel = relocs; rel < relend; rel++)
    {
      struct alpha_elf_link_hash_entry *h = NULL;
      struct alpha_elf_got_entry *gotent;
      bfd_reloc_status_type r;
      reloc_howto_type *howto;
      unsigned long r_symndx;
      Elf_Internal_Sym *sym = NULL;
      asection *sec = NULL;
      bfd_vma value;
      bfd_vma addend;
      bfd_boolean dynamic_symbol_p;
      bfd_boolean undef_weak_ref = FALSE;
      unsigned long r_type;

      r_type = ELF64_R_TYPE(rel->r_info);
      if (r_type >= R_ALPHA_max)
       {
         (*_bfd_error_handler)
           (_("%B: unknown relocation type %d"),
            input_bfd, (int) r_type);
         bfd_set_error (bfd_error_bad_value);
         ret_val = FALSE;
         continue;
       }

      howto = elf64_alpha_howto_table + r_type;
      r_symndx = ELF64_R_SYM(rel->r_info);

      /* The symbol for a TLSLDM reloc is ignored.  Collapse the
        reloc to the 0 symbol so that they all match.  */
      if (r_type == R_ALPHA_TLSLDM)
       r_symndx = 0;

      if (r_symndx < symtab_hdr->sh_info)
       {
         asection *msec;
         sym = local_syms + r_symndx;
         sec = local_sections[r_symndx];
         msec = sec;
         value = _bfd_elf_rela_local_sym (output_bfd, sym, &msec, rel);

         /* If this is a tp-relative relocation against sym 0,
            this is hackery from relax_section.  Force the value to
            be the tls module base.  */
         if (r_symndx == 0
             && (r_type == R_ALPHA_TLSLDM
                || r_type == R_ALPHA_GOTTPREL
                || r_type == R_ALPHA_TPREL64
                || r_type == R_ALPHA_TPRELHI
                || r_type == R_ALPHA_TPRELLO
                || r_type == R_ALPHA_TPREL16))
           value = dtp_base;

         if (local_got_entries)
           gotent = local_got_entries[r_symndx];
         else
           gotent = NULL;

         /* Need to adjust local GOT entries' addends for SEC_MERGE
            unless it has been done already.  */
         if ((sec->flags & SEC_MERGE)
             && ELF_ST_TYPE (sym->st_info) == STT_SECTION
             && sec->sec_info_type == ELF_INFO_TYPE_MERGE
             && gotent
             && !gotent->reloc_xlated)
           {
             struct alpha_elf_got_entry *ent;

             for (ent = gotent; ent; ent = ent->next)
              {
                ent->reloc_xlated = 1;
                if (ent->use_count == 0)
                  continue;
                msec = sec;
                ent->addend =
                  _bfd_merged_section_offset (output_bfd, &msec,
                                          elf_section_data (sec)->
                                            sec_info,
                                          sym->st_value + ent->addend);
                ent->addend -= sym->st_value;
                ent->addend += msec->output_section->vma
                             + msec->output_offset
                             - sec->output_section->vma
                             - sec->output_offset;
              }
           }

         dynamic_symbol_p = FALSE;
       }
      else
       {
         bfd_boolean warned;
         bfd_boolean unresolved_reloc;
         struct elf_link_hash_entry *hh;
         struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);

         RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
                               r_symndx, symtab_hdr, sym_hashes,
                               hh, sec, value,
                               unresolved_reloc, warned);

         if (warned)
           continue;

         if (value == 0
             && ! unresolved_reloc
             && hh->root.type == bfd_link_hash_undefweak)
           undef_weak_ref = TRUE;

         h = (struct alpha_elf_link_hash_entry *) hh;
          dynamic_symbol_p = alpha_elf_dynamic_symbol_p (&h->root, info);
         gotent = h->got_entries;
       }

      if (sec != NULL && elf_discarded_section (sec))
       {
         /* For relocs against symbols from removed linkonce sections,
            or sections discarded by a linker script, we just want the
            section contents zeroed.  Avoid any special processing.  */
         _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
         rel->r_info = 0;
         rel->r_addend = 0;
         continue;
       }

      addend = rel->r_addend;
      value += addend;

      /* Search for the proper got entry.  */
      for (; gotent ; gotent = gotent->next)
       if (gotent->gotobj == gotobj
           && gotent->reloc_type == r_type
           && gotent->addend == addend)
         break;

      switch (r_type)
       {
       case R_ALPHA_GPDISP:
         {
           bfd_byte *p_ldah, *p_lda;

           BFD_ASSERT(gp != 0);

           value = (input_section->output_section->vma
                   + input_section->output_offset
                   + rel->r_offset);

           p_ldah = contents + rel->r_offset;
           p_lda = p_ldah + rel->r_addend;

           r = elf64_alpha_do_reloc_gpdisp (input_bfd, gp - value,
                                        p_ldah, p_lda);
         }
         break;

       case R_ALPHA_LITERAL:
         BFD_ASSERT(sgot != NULL);
         BFD_ASSERT(gp != 0);
         BFD_ASSERT(gotent != NULL);
         BFD_ASSERT(gotent->use_count >= 1);

         if (!gotent->reloc_done)
           {
             gotent->reloc_done = 1;

             bfd_put_64 (output_bfd, value,
                       sgot->contents + gotent->got_offset);

             /* If the symbol has been forced local, output a
               RELATIVE reloc, otherwise it will be handled in
               finish_dynamic_symbol.  */
             if (info->shared && !dynamic_symbol_p && !undef_weak_ref)
              elf64_alpha_emit_dynrel (output_bfd, info, sgot, srelgot,
                                    gotent->got_offset, 0,
                                    R_ALPHA_RELATIVE, value);
           }

         value = (sgot->output_section->vma
                 + sgot->output_offset
                 + gotent->got_offset);
         value -= gp;
         goto default_reloc;

       case R_ALPHA_GPREL32:
       case R_ALPHA_GPREL16:
       case R_ALPHA_GPRELLOW:
         if (dynamic_symbol_p)
            {
              (*_bfd_error_handler)
                (_("%B: gp-relative relocation against dynamic symbol %s"),
                 input_bfd, h->root.root.root.string);
              ret_val = FALSE;
            }
         BFD_ASSERT(gp != 0);
         value -= gp;
         goto default_reloc;

       case R_ALPHA_GPRELHIGH:
         if (dynamic_symbol_p)
            {
              (*_bfd_error_handler)
                (_("%B: gp-relative relocation against dynamic symbol %s"),
                 input_bfd, h->root.root.root.string);
              ret_val = FALSE;
            }
         BFD_ASSERT(gp != 0);
         value -= gp;
         value = ((bfd_signed_vma) value >> 16) + ((value >> 15) & 1);
         goto default_reloc;

       case R_ALPHA_HINT:
         /* A call to a dynamic symbol is definitely out of range of
            the 16-bit displacement.  Don't bother writing anything.  */
         if (dynamic_symbol_p)
           {
             r = bfd_reloc_ok;
             break;
           }
         /* The regular PC-relative stuff measures from the start of
            the instruction rather than the end.  */
         value -= 4;
         goto default_reloc;

       case R_ALPHA_BRADDR:
         if (dynamic_symbol_p)
            {
              (*_bfd_error_handler)
                (_("%B: pc-relative relocation against dynamic symbol %s"),
                 input_bfd, h->root.root.root.string);
              ret_val = FALSE;
            }
         /* The regular PC-relative stuff measures from the start of
            the instruction rather than the end.  */
         value -= 4;
         goto default_reloc;

       case R_ALPHA_BRSGP:
         {
           int other;
           const char *name;

           /* The regular PC-relative stuff measures from the start of
              the instruction rather than the end.  */
           value -= 4;

           /* The source and destination gp must be the same.  Note that
              the source will always have an assigned gp, since we forced
              one in check_relocs, but that the destination may not, as
              it might not have had any relocations at all.  Also take
              care not to crash if H is an undefined symbol.  */
           if (h != NULL && sec != NULL
              && alpha_elf_tdata (sec->owner)->gotobj
              && gotobj != alpha_elf_tdata (sec->owner)->gotobj)
             {
              (*_bfd_error_handler)
                (_("%B: change in gp: BRSGP %s"),
                 input_bfd, h->root.root.root.string);
              ret_val = FALSE;
             }

           /* The symbol should be marked either NOPV or STD_GPLOAD.  */
           if (h != NULL)
             other = h->root.other;
           else
             other = sym->st_other;
           switch (other & STO_ALPHA_STD_GPLOAD)
             {
             case STO_ALPHA_NOPV:
               break;
             case STO_ALPHA_STD_GPLOAD:
              value += 8;
              break;
             default:
              if (h != NULL)
                name = h->root.root.root.string;
              else
                {
                  name = (bfd_elf_string_from_elf_section
                         (input_bfd, symtab_hdr->sh_link, sym->st_name));
                  if (name == NULL)
                    name = _("<unknown>");
                  else if (name[0] == 0)
                    name = bfd_section_name (input_bfd, sec);
                }
              (*_bfd_error_handler)
                (_("%B: !samegp reloc against symbol without .prologue: %s"),
                 input_bfd, name);
              ret_val = FALSE;
              break;
             }

           goto default_reloc;
         }

       case R_ALPHA_REFLONG:
       case R_ALPHA_REFQUAD:
       case R_ALPHA_DTPREL64:
       case R_ALPHA_TPREL64:
         {
           long dynindx, dyntype = r_type;
           bfd_vma dynaddend;

           /* Careful here to remember RELATIVE relocations for global
              variables for symbolic shared objects.  */

           if (dynamic_symbol_p)
             {
              BFD_ASSERT(h->root.dynindx != -1);
              dynindx = h->root.dynindx;
              dynaddend = addend;
              addend = 0, value = 0;
             }
           else if (r_type == R_ALPHA_DTPREL64)
             {
              BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
              value -= dtp_base;
              goto default_reloc;
             }
           else if (r_type == R_ALPHA_TPREL64)
             {
              BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
              if (!info->shared)
                {
                  value -= tp_base;
                  goto default_reloc;
                }
              dynindx = 0;
              dynaddend = value - dtp_base;
             }
           else if (info->shared
                   && r_symndx != 0
                   && (input_section->flags & SEC_ALLOC)
                   && !undef_weak_ref)
             {
              if (r_type == R_ALPHA_REFLONG)
                {
                  (*_bfd_error_handler)
                    (_("%B: unhandled dynamic relocation against %s"),
                     input_bfd,
                     h->root.root.root.string);
                  ret_val = FALSE;
                }
              dynindx = 0;
              dyntype = R_ALPHA_RELATIVE;
              dynaddend = value;
             }
           else
             goto default_reloc;

           if (input_section->flags & SEC_ALLOC)
             elf64_alpha_emit_dynrel (output_bfd, info, input_section,
                                   srel, rel->r_offset, dynindx,
                                   dyntype, dynaddend);
         }
         goto default_reloc;

       case R_ALPHA_SREL16:
       case R_ALPHA_SREL32:
       case R_ALPHA_SREL64:
         if (dynamic_symbol_p)
            {
              (*_bfd_error_handler)
                (_("%B: pc-relative relocation against dynamic symbol %s"),
                 input_bfd, h->root.root.root.string);
              ret_val = FALSE;
            }
         else if ((info->shared || info->pie) && undef_weak_ref)
            {
              (*_bfd_error_handler)
                (_("%B: pc-relative relocation against undefined weak symbol %s"),
                 input_bfd, h->root.root.root.string);
              ret_val = FALSE;
            }


         /* ??? .eh_frame references to discarded sections will be smashed
            to relocations against SHN_UNDEF.  The .eh_frame format allows
            NULL to be encoded as 0 in any format, so this works here.  */
         if (r_symndx == 0)
           howto = (elf64_alpha_howto_table
                   + (r_type - R_ALPHA_SREL32 + R_ALPHA_REFLONG));
         goto default_reloc;

       case R_ALPHA_TLSLDM:
         /* Ignore the symbol for the relocation.  The result is always
            the current module.  */
         dynamic_symbol_p = 0;
         /* FALLTHRU */

       case R_ALPHA_TLSGD:
         if (!gotent->reloc_done)
           {
             gotent->reloc_done = 1;

             /* Note that the module index for the main program is 1.  */
             bfd_put_64 (output_bfd, !info->shared && !dynamic_symbol_p,
                       sgot->contents + gotent->got_offset);

             /* If the symbol has been forced local, output a
               DTPMOD64 reloc, otherwise it will be handled in
               finish_dynamic_symbol.  */
             if (info->shared && !dynamic_symbol_p)
              elf64_alpha_emit_dynrel (output_bfd, info, sgot, srelgot,
                                    gotent->got_offset, 0,
                                    R_ALPHA_DTPMOD64, 0);

             if (dynamic_symbol_p || r_type == R_ALPHA_TLSLDM)
              value = 0;
             else
              {
                BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
                 value -= dtp_base;
              }
             bfd_put_64 (output_bfd, value,
                       sgot->contents + gotent->got_offset + 8);
           }

         value = (sgot->output_section->vma
                 + sgot->output_offset
                 + gotent->got_offset);
         value -= gp;
         goto default_reloc;

       case R_ALPHA_DTPRELHI:
       case R_ALPHA_DTPRELLO:
       case R_ALPHA_DTPREL16:
         if (dynamic_symbol_p)
            {
              (*_bfd_error_handler)
                (_("%B: dtp-relative relocation against dynamic symbol %s"),
                 input_bfd, h->root.root.root.string);
              ret_val = FALSE;
            }
         BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
         value -= dtp_base;
         if (r_type == R_ALPHA_DTPRELHI)
           value = ((bfd_signed_vma) value >> 16) + ((value >> 15) & 1);
         goto default_reloc;

       case R_ALPHA_TPRELHI:
       case R_ALPHA_TPRELLO:
       case R_ALPHA_TPREL16:
         if (info->shared)
           {
             (*_bfd_error_handler)
              (_("%B: TLS local exec code cannot be linked into shared objects"),
              input_bfd);
              ret_val = FALSE;
           }
         else if (dynamic_symbol_p)
            {
              (*_bfd_error_handler)
                (_("%B: tp-relative relocation against dynamic symbol %s"),
                 input_bfd, h->root.root.root.string);
              ret_val = FALSE;
            }
         BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
         value -= tp_base;
         if (r_type == R_ALPHA_TPRELHI)
           value = ((bfd_signed_vma) value >> 16) + ((value >> 15) & 1);
         goto default_reloc;

       case R_ALPHA_GOTDTPREL:
       case R_ALPHA_GOTTPREL:
         BFD_ASSERT(sgot != NULL);
         BFD_ASSERT(gp != 0);
         BFD_ASSERT(gotent != NULL);
         BFD_ASSERT(gotent->use_count >= 1);

         if (!gotent->reloc_done)
           {
             gotent->reloc_done = 1;

             if (dynamic_symbol_p)
              value = 0;
             else
              {
                BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
                if (r_type == R_ALPHA_GOTDTPREL)
                  value -= dtp_base;
                else if (!info->shared)
                  value -= tp_base;
                else
                  {
                    elf64_alpha_emit_dynrel (output_bfd, info, sgot, srelgot,
                                          gotent->got_offset, 0,
                                          R_ALPHA_TPREL64,
                                          value - dtp_base);
                    value = 0;
                  }
              }
             bfd_put_64 (output_bfd, value,
                       sgot->contents + gotent->got_offset);
           }

         value = (sgot->output_section->vma
                 + sgot->output_offset
                 + gotent->got_offset);
         value -= gp;
         goto default_reloc;

       default:
       default_reloc:
         r = _bfd_final_link_relocate (howto, input_bfd, input_section,
                                   contents, rel->r_offset, value, 0);
         break;
       }

      switch (r)
       {
       case bfd_reloc_ok:
         break;

       case bfd_reloc_overflow:
         {
           const char *name;

           /* Don't warn if the overflow is due to pc relative reloc
              against discarded section.  Section optimization code should
              handle it.  */

           if (r_symndx < symtab_hdr->sh_info
              && sec != NULL && howto->pc_relative
              && elf_discarded_section (sec))
             break;

           if (h != NULL)
             name = NULL;
           else
             {
              name = (bfd_elf_string_from_elf_section
                     (input_bfd, symtab_hdr->sh_link, sym->st_name));
              if (name == NULL)
                return FALSE;
              if (*name == '\0')
                name = bfd_section_name (input_bfd, sec);
             }
           if (! ((*info->callbacks->reloc_overflow)
                 (info, (h ? &h->root.root : NULL), name, howto->name,
                  (bfd_vma) 0, input_bfd, input_section,
                  rel->r_offset)))
             ret_val = FALSE;
         }
         break;

       default:
       case bfd_reloc_outofrange:
         abort ();
       }
    }

  return ret_val;
}

Here is the call graph for this function:

static bfd_boolean elf64_alpha_relocate_section_r ( bfd *output_bfd  ATTRIBUTE_UNUSED,
struct bfd_link_info *info  ATTRIBUTE_UNUSED,
bfd input_bfd,
asection input_section,
bfd_byte *contents  ATTRIBUTE_UNUSED,
Elf_Internal_Rela relocs,
Elf_Internal_Sym *  local_syms,
asection **  local_sections 
) [static]

Definition at line 3921 of file elf64-alpha.c.

{
  unsigned long symtab_hdr_sh_info;
  Elf_Internal_Rela *rel;
  Elf_Internal_Rela *relend;
  struct elf_link_hash_entry **sym_hashes;
  bfd_boolean ret_val = TRUE;

  symtab_hdr_sh_info = elf_tdata (input_bfd)->symtab_hdr.sh_info;
  sym_hashes = elf_sym_hashes (input_bfd);

  relend = relocs + input_section->reloc_count;
  for (rel = relocs; rel < relend; rel++)
    {
      unsigned long r_symndx;
      Elf_Internal_Sym *sym;
      asection *sec;
      unsigned long r_type;

      r_type = ELF64_R_TYPE (rel->r_info);
      if (r_type >= R_ALPHA_max)
       {
         (*_bfd_error_handler)
           (_("%B: unknown relocation type %d"),
            input_bfd, (int) r_type);
         bfd_set_error (bfd_error_bad_value);
         ret_val = FALSE;
         continue;
       }

      /* The symbol associated with GPDISP and LITUSE is
        immaterial.  Only the addend is significant.  */
      if (r_type == R_ALPHA_GPDISP || r_type == R_ALPHA_LITUSE)
       continue;

      r_symndx = ELF64_R_SYM (rel->r_info);
      if (r_symndx < symtab_hdr_sh_info)
       {
         sym = local_syms + r_symndx;
         sec = local_sections[r_symndx];
       }
      else
       {
         struct elf_link_hash_entry *h;

         h = sym_hashes[r_symndx - symtab_hdr_sh_info];

         while (h->root.type == bfd_link_hash_indirect
               || h->root.type == bfd_link_hash_warning)
           h = (struct elf_link_hash_entry *) h->root.u.i.link;

         if (h->root.type != bfd_link_hash_defined
             && h->root.type != bfd_link_hash_defweak)
           continue;

         sym = NULL;
         sec = h->root.u.def.section;
       }

      if (sec != NULL && elf_discarded_section (sec))
       {
         /* For relocs against symbols from removed linkonce sections,
            or sections discarded by a linker script, we just want the
            section contents zeroed.  */
         _bfd_clear_contents (elf64_alpha_howto_table + r_type,
                            input_bfd, contents + rel->r_offset);
         rel->r_info = 0;
         rel->r_addend = 0;
         continue;
       }

      if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
       rel->r_addend += sec->output_offset;
    }

  return ret_val;
}

Here is the call graph for this function:

Here is the caller graph for this function:

static bfd_boolean elf64_alpha_section_flags ( flagword flags,
const Elf_Internal_Shdr hdr 
) [static]

Definition at line 1148 of file elf64-alpha.c.

{
  if (hdr->sh_flags & SHF_ALPHA_GPREL)
    *flags |= SEC_SMALL_DATA;

  return TRUE;
}
static bfd_boolean elf64_alpha_section_from_shdr ( bfd abfd,
Elf_Internal_Shdr hdr,
const char *  name,
int  shindex 
) [static]

Definition at line 1108 of file elf64-alpha.c.

{
  asection *newsect;

  /* There ought to be a place to keep ELF backend specific flags, but
     at the moment there isn't one.  We just keep track of the
     sections by their name, instead.  Fortunately, the ABI gives
     suggested names for all the MIPS specific sections, so we will
     probably get away with this.  */
  switch (hdr->sh_type)
    {
    case SHT_ALPHA_DEBUG:
      if (strcmp (name, ".mdebug") != 0)
       return FALSE;
      break;
    default:
      return FALSE;
    }

  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
    return FALSE;
  newsect = hdr->bfd_section;

  if (hdr->sh_type == SHT_ALPHA_DEBUG)
    {
      if (! bfd_set_section_flags (abfd, newsect,
                               (bfd_get_section_flags (abfd, newsect)
                                | SEC_DEBUGGING)))
       return FALSE;
    }

  return TRUE;
}

Here is the call graph for this function:

static bfd_boolean elf64_alpha_size_dynamic_sections ( bfd *output_bfd  ATTRIBUTE_UNUSED,
struct bfd_link_info info 
) [static]

Definition at line 2746 of file elf64-alpha.c.

{
  bfd *dynobj;
  asection *s;
  bfd_boolean relplt;

  dynobj = elf_hash_table(info)->dynobj;
  BFD_ASSERT(dynobj != NULL);

  if (elf_hash_table (info)->dynamic_sections_created)
    {
      /* Set the contents of the .interp section to the interpreter.  */
      if (info->executable)
       {
         s = bfd_get_section_by_name (dynobj, ".interp");
         BFD_ASSERT (s != NULL);
         s->size = sizeof ELF_DYNAMIC_INTERPRETER;
         s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
       }

      /* Now that we've seen all of the input files, we can decide which
        symbols need dynamic relocation entries and which don't.  We've
        collected information in check_relocs that we can now apply to
        size the dynamic relocation sections.  */
      alpha_elf_link_hash_traverse (alpha_elf_hash_table (info),
                                elf64_alpha_calc_dynrel_sizes, info);

      elf64_alpha_size_rela_got_section (info);
      elf64_alpha_size_plt_section (info);
    }
  /* else we're not dynamic and by definition we don't need such things.  */

  /* The check_relocs and adjust_dynamic_symbol entry points have
     determined the sizes of the various dynamic sections.  Allocate
     memory for them.  */
  relplt = FALSE;
  for (s = dynobj->sections; s != NULL; s = s->next)
    {
      const char *name;

      if (!(s->flags & SEC_LINKER_CREATED))
       continue;

      /* It's OK to base decisions on the section name, because none
        of the dynobj section names depend upon the input files.  */
      name = bfd_get_section_name (dynobj, s);

      if (CONST_STRNEQ (name, ".rela"))
       {
         if (s->size != 0)
           {
             if (strcmp (name, ".rela.plt") == 0)
              relplt = TRUE;

             /* We use the reloc_count field as a counter if we need
               to copy relocs into the output file.  */
             s->reloc_count = 0;
           }
       }
      else if (! CONST_STRNEQ (name, ".got")
              && strcmp (name, ".plt") != 0
              && strcmp (name, ".dynbss") != 0)
       {
         /* It's not one of our dynamic sections, so don't allocate space.  */
         continue;
       }

      if (s->size == 0)
       {
         /* If we don't need this section, strip it from the output file.
            This is to handle .rela.bss and .rela.plt.  We must create it
            in create_dynamic_sections, because it must be created before
            the linker maps input sections to output sections.  The
            linker does that before adjust_dynamic_symbol is called, and
            it is that function which decides whether anything needs to
            go into these sections.  */
         s->flags |= SEC_EXCLUDE;
       }
      else if ((s->flags & SEC_HAS_CONTENTS) != 0)
       {
         /* Allocate memory for the section contents.  */
         s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
         if (s->contents == NULL)
           return FALSE;
       }
    }

  if (elf_hash_table (info)->dynamic_sections_created)
    {
      /* Add some entries to the .dynamic section.  We fill in the
        values later, in elf64_alpha_finish_dynamic_sections, but we
        must add the entries now so that we get the correct size for
        the .dynamic section.  The DT_DEBUG entry is filled in by the
        dynamic linker and used by the debugger.  */
#define add_dynamic_entry(TAG, VAL) \
  _bfd_elf_add_dynamic_entry (info, TAG, VAL)

      if (info->executable)
       {
         if (!add_dynamic_entry (DT_DEBUG, 0))
           return FALSE;
       }

      if (relplt)
       {
         if (!add_dynamic_entry (DT_PLTGOT, 0)
             || !add_dynamic_entry (DT_PLTRELSZ, 0)
             || !add_dynamic_entry (DT_PLTREL, DT_RELA)
             || !add_dynamic_entry (DT_JMPREL, 0))
           return FALSE;

         if (elf64_alpha_use_secureplt
             && !add_dynamic_entry (DT_ALPHA_PLTRO, 1))
           return FALSE;
       }

      if (!add_dynamic_entry (DT_RELA, 0)
         || !add_dynamic_entry (DT_RELASZ, 0)
         || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
       return FALSE;

      if (info->flags & DF_TEXTREL)
       {
         if (!add_dynamic_entry (DT_TEXTREL, 0))
           return FALSE;
       }
    }
#undef add_dynamic_entry

  return TRUE;
}

Here is the call graph for this function:

Definition at line 2375 of file elf64-alpha.c.

{
  bfd *i, *got_list, *cur_got_obj = NULL;
  int something_changed = 0;

  got_list = alpha_elf_hash_table (info)->got_list;

  /* On the first time through, pretend we have an existing got list
     consisting of all of the input files.  */
  if (got_list == NULL)
    {
      for (i = info->input_bfds; i ; i = i->link_next)
       {
         bfd *this_got = alpha_elf_tdata (i)->gotobj;
         if (this_got == NULL)
           continue;

         /* We are assuming no merging has yet occurred.  */
         BFD_ASSERT (this_got == i);

          if (alpha_elf_tdata (this_got)->total_got_size > MAX_GOT_SIZE)
           {
             /* Yikes! A single object file has too many entries.  */
             (*_bfd_error_handler)
               (_("%B: .got subsegment exceeds 64K (size %d)"),
                i, alpha_elf_tdata (this_got)->total_got_size);
             return FALSE;
           }

         if (got_list == NULL)
           got_list = this_got;
         else
           alpha_elf_tdata(cur_got_obj)->got_link_next = this_got;
         cur_got_obj = this_got;
       }

      /* Strange degenerate case of no got references.  */
      if (got_list == NULL)
       return TRUE;

      alpha_elf_hash_table (info)->got_list = got_list;

      /* Force got offsets to be recalculated.  */
      something_changed = 1;
    }

  cur_got_obj = got_list;
  i = alpha_elf_tdata(cur_got_obj)->got_link_next;
  while (i != NULL)
    {
      if (elf64_alpha_can_merge_gots (cur_got_obj, i))
       {
         elf64_alpha_merge_gots (cur_got_obj, i);

         alpha_elf_tdata(i)->got->size = 0;
         i = alpha_elf_tdata(i)->got_link_next;
         alpha_elf_tdata(cur_got_obj)->got_link_next = i;
         
         something_changed = 1;
       }
      else
       {
         cur_got_obj = i;
         i = alpha_elf_tdata(i)->got_link_next;
       }
    }

  /* Once the gots have been merged, fill in the got offsets for
     everything therein.  */
  if (1 || something_changed)
    elf64_alpha_calc_got_offsets (info);

  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

Definition at line 2484 of file elf64-alpha.c.

{
  asection *splt, *spltrel, *sgotplt;
  unsigned long entries;
  bfd *dynobj;

  dynobj = elf_hash_table(info)->dynobj;
  splt = bfd_get_section_by_name (dynobj, ".plt");
  if (splt == NULL)
    return TRUE;

  splt->size = 0;

  alpha_elf_link_hash_traverse (alpha_elf_hash_table (info),
                            elf64_alpha_size_plt_section_1, splt);

  /* Every plt entry requires a JMP_SLOT relocation.  */
  spltrel = bfd_get_section_by_name (dynobj, ".rela.plt");
  if (splt->size)
    {
      if (elf64_alpha_use_secureplt)
       entries = (splt->size - NEW_PLT_HEADER_SIZE) / NEW_PLT_ENTRY_SIZE;
      else
       entries = (splt->size - OLD_PLT_HEADER_SIZE) / OLD_PLT_ENTRY_SIZE;
    }
  else
    entries = 0;
  spltrel->size = entries * sizeof (Elf64_External_Rela);

  /* When using the secureplt, we need two words somewhere in the data
     segment for the dynamic linker to tell us where to go.  This is the
     entire contents of the .got.plt section.  */
  if (elf64_alpha_use_secureplt)
    {
      sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
      sgotplt->size = entries ? 16 : 0;
    }

  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

Definition at line 2451 of file elf64-alpha.c.

{
  asection *splt = (asection *) data;
  struct alpha_elf_got_entry *gotent;
  bfd_boolean saw_one = FALSE;

  /* If we didn't need an entry before, we still don't.  */
  if (!h->root.needs_plt)
    return TRUE;

  /* For each LITERAL got entry still in use, allocate a plt entry.  */
  for (gotent = h->got_entries; gotent ; gotent = gotent->next)
    if (gotent->reloc_type == R_ALPHA_LITERAL
       && gotent->use_count > 0)
      {
       if (splt->size == 0)
         splt->size = PLT_HEADER_SIZE;
       gotent->plt_offset = splt->size;
       splt->size += PLT_ENTRY_SIZE;
       saw_one = TRUE;
      }

  /* If there weren't any, there's no longer a need for the PLT entry.  */
  if (!saw_one)
    h->root.needs_plt = FALSE;

  return TRUE;
}

Here is the caller graph for this function:

Definition at line 2648 of file elf64-alpha.c.

{
  bfd_boolean dynamic;
  struct alpha_elf_got_entry *gotent;
  unsigned long entries;

  if (h->root.root.type == bfd_link_hash_warning)
    h = (struct alpha_elf_link_hash_entry *) h->root.root.u.i.link;

  /* If we're using a plt for this symbol, then all of its relocations
     for its got entries go into .rela.plt.  */
  if (h->root.needs_plt)
    return TRUE;

  /* If the symbol is dynamic, we'll need all the relocations in their
     natural form.  If this is a shared object, and it has been forced
     local, we'll need the same number of RELATIVE relocations.  */
  dynamic = alpha_elf_dynamic_symbol_p (&h->root, info);

  /* If the symbol is a hidden undefined weak, then we never have any
     relocations.  Avoid the loop which may want to add RELATIVE relocs
     based on info->shared.  */
  if (h->root.root.type == bfd_link_hash_undefweak && !dynamic)
    return TRUE;

  entries = 0;
  for (gotent = h->got_entries; gotent ; gotent = gotent->next)
    if (gotent->use_count > 0)
      entries += alpha_dynamic_entries_for_reloc (gotent->reloc_type,
                                            dynamic, info->shared);

  if (entries > 0)
    {
      bfd *dynobj = elf_hash_table(info)->dynobj;
      asection *srel = bfd_get_section_by_name (dynobj, ".rela.got");
      BFD_ASSERT (srel != NULL);
      srel->size += sizeof (Elf64_External_Rela) * entries;
    }

  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

Definition at line 2694 of file elf64-alpha.c.

{
  unsigned long entries;
  bfd *i, *dynobj;
  asection *srel;

  /* Shared libraries often require RELATIVE relocs, and some relocs
     require attention for the main application as well.  */

  entries = 0;
  for (i = alpha_elf_hash_table(info)->got_list;
       i ; i = alpha_elf_tdata(i)->got_link_next)
    {
      bfd *j;

      for (j = i; j ; j = alpha_elf_tdata(j)->in_got_link_next)
       {
         struct alpha_elf_got_entry **local_got_entries, *gotent;
         int k, n;

         local_got_entries = alpha_elf_tdata(j)->local_got_entries;
         if (!local_got_entries)
           continue;

         for (k = 0, n = elf_tdata(j)->symtab_hdr.sh_info; k < n; ++k)
           for (gotent = local_got_entries[k];
               gotent ; gotent = gotent->next)
             if (gotent->use_count > 0)
              entries += (alpha_dynamic_entries_for_reloc
                         (gotent->reloc_type, 0, info->shared));
       }
    }

  dynobj = elf_hash_table(info)->dynobj;
  srel = bfd_get_section_by_name (dynobj, ".rela.got");
  if (!srel)
    {
      BFD_ASSERT (entries == 0);
      return TRUE;
    }
  srel->size = sizeof (Elf64_External_Rela) * entries;

  /* Now do the non-local symbols.  */
  alpha_elf_link_hash_traverse (alpha_elf_hash_table (info),
                            elf64_alpha_size_rela_got_1, info);

  return TRUE;
}

Here is the call graph for this function:

Here is the caller graph for this function:

Definition at line 1723 of file elf64-alpha.c.

{
  return ((ah->root.type == STT_FUNC
         || ah->root.root.type == bfd_link_hash_undefweak
         || ah->root.root.type == bfd_link_hash_undefined)
         && (ah->flags & ALPHA_ELF_LINK_HASH_LU_PLT) != 0
         && (ah->flags & ~ALPHA_ELF_LINK_HASH_LU_PLT) == 0);
}

Here is the caller graph for this function:

static struct alpha_elf_got_entry* get_got_entry ( bfd abfd,
struct alpha_elf_link_hash_entry h,
unsigned long  r_type,
unsigned long  r_symndx,
bfd_vma  r_addend 
) [static, read]

Definition at line 1647 of file elf64-alpha.c.

{
  struct alpha_elf_got_entry *gotent;
  struct alpha_elf_got_entry **slot;

  if (h)
    slot = &h->got_entries;
  else
    {
      /* This is a local .got entry -- record for merge.  */

      struct alpha_elf_got_entry **local_got_entries;

      local_got_entries = alpha_elf_tdata(abfd)->local_got_entries;
      if (!local_got_entries)
       {
         bfd_size_type size;
         Elf_Internal_Shdr *symtab_hdr;

         symtab_hdr = &elf_tdata(abfd)->symtab_hdr;
         size = symtab_hdr->sh_info;
         size *= sizeof (struct alpha_elf_got_entry *);

         local_got_entries
           = (struct alpha_elf_got_entry **) bfd_zalloc (abfd, size);
         if (!local_got_entries)
           return NULL;

         alpha_elf_tdata (abfd)->local_got_entries = local_got_entries;
       }

      slot = &local_got_entries[r_symndx];
    }

  for (gotent = *slot; gotent ; gotent = gotent->next)
    if (gotent->gotobj == abfd
       && gotent->reloc_type == r_type
       && gotent->addend == r_addend)
      break;

  if (!gotent)
    {
      int entry_size;
      bfd_size_type amt;

      amt = sizeof (struct alpha_elf_got_entry);
      gotent = (struct alpha_elf_got_entry *) bfd_alloc (abfd, amt);
      if (!gotent)
       return NULL;

      gotent->gotobj = abfd;
      gotent->addend = r_addend;
      gotent->got_offset = -1;
      gotent->plt_offset = -1;
      gotent->use_count = 1;
      gotent->reloc_type = r_type;
      gotent->reloc_done = 0;
      gotent->reloc_xlated = 0;

      gotent->next = *slot;
      *slot = gotent;

      entry_size = alpha_got_entry_size (r_type);
      alpha_elf_tdata (abfd)->total_got_size += entry_size;
      if (!h)
       alpha_elf_tdata(abfd)->local_got_size += entry_size;
    }
  else
    gotent->use_count += 1;

  return gotent;
}

Here is the call graph for this function:

Here is the caller graph for this function:


Variable Documentation

Initial value:

Definition at line 5207 of file elf64-alpha.c.

Definition at line 5218 of file elf64-alpha.c.

reloc_howto_type elf64_alpha_howto_table[] [static]

Definition at line 459 of file elf64-alpha.c.

Definition at line 87 of file elf64-alpha.c.

struct elf_reloc_map[] [static]

Definition at line 1007 of file elf64-alpha.c.